The KPZ Limit of ASEP with Boundary
Abstract
It was recently proved in Corwin and Shen (CPAM, [CS16]) that under weakly asymmetric scaling, the height functions for ASEP with sources and sinks converges to the Hopf–Cole solution of the KPZ equation with inhomogeneous Neumann boundary conditions. In their assumptions [CS16] chose positive values for the Neumann boundary condition, and they assumed initial data which is close to stationarity. By developing more extensive heat-kernel estimates, we clarify and extend their results to negative values of the Neumann boundary parameters, and we also show how to generalize their results to empty initial data (which is very far from stationarity). Combining our result with Barraquand et al. (Duke Math J, [BBCW17]), we obtain the Laplace transform of the one-point distribution for half-line KPZ, and use this to confirm t1/3-scale GOE Tracy–Widom long-time fluctuations at the origin.
Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
The authorwishes to thank Ivan Corwin for suggesting the problem, for providing helpful discussions about various issues which came up during the writing of the paper, for suggesting the free energy heuristic to obtain the limit and T 1/2-fluctuations in the low-density regime, and also for thoroughly reading the first four preliminary drafts of this paper. We also wish to thank Hao Shen and Li-Cheng Tsai, who provided some very useful discussions. The author was partially supported by the Fernholz Foundation’s “Summer Minerva Fellows” program, as well as summer support from Ivan Corwin’s NSF Grant DMS:1811143.
References
- ACQ11.Amir G., Corwin I., Quastel J.: Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Commun. Pure Appl. Math. 64, 466 (2011)MathSciNetzbMATHGoogle Scholar
- AKQ13.Alberts, T., Khanin, K., Quastel, J.: The continuum directed random polymer. J. Stat. Phys. 154(1–2), (2014)Google Scholar
- BBC16.Borodin, A., Bufetov, A., Corwin, I.: Directed random polymers via nested contour integrals (2016). arXiv preprint. arXiv:1511.07324
- BBC18.Barraquand, G., Borodin, A., Corwin, I.: Half-space Macdonald processes (2018). arXiv preprint arXiv:1802.08210
- BBCS16.Baik, J., Barraquand, G., Corwin, I., Suidan, T.: Pfaffian Schur proceses and last passage percolation in a half-quadrant (2016). arXiv preprint. arXiv:1606.00525
- BBCW17.Barraquand, G., Borodin, A., Corwin, I., Wheeler, M.: Stochastic six-vertex model in a half-quadrant and half-line open ASEP. Duke Math. J. (2018). arXiv:1704.04309v2
- BC14.Borodin A., Corwin I.: Macdonald processes. Prob. Theory Relat. Fields 158(1-2), 225–400 (2014)MathSciNetzbMATHGoogle Scholar
- BD06.Bodineau T., Derrida B.: Current large deviations for asymmetric exclusion processes with open boundaries. J. Stat. Phys. 123(2), 277–300 (2006)ADSMathSciNetzbMATHGoogle Scholar
- BG16.Borodin A., Gorin V.: Moments match between the KPZ equation and the airy point process. SIGMA 12(102), 1–7 (2016)MathSciNetzbMATHGoogle Scholar
- BG97.Bertini L., Giacomin G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)ADSMathSciNetzbMATHGoogle Scholar
- Bil97.Billingsley P.: Convergence of Probability Measures. Wiley, Hoboken (1997)zbMATHGoogle Scholar
- Bor18.Borodin A.: Stochastic higher spin six vertex model and Macdonald measures. J. Math. Phys. 59(2), 023301 (2018)ADSMathSciNetzbMATHGoogle Scholar
- BR01.Baik, J., Rains, E.: The asymptotics of monotone subsequences of involutions. Duke Math. J. 109(2), 205–281 (2001)Google Scholar
- CG18.Corwin, I., Ghosal, P.: Lower tail of the KPZ equation (2018). arXiv preprint arXiv:1802.03273
- Cor12.Corwin I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1(01), 1130001 (2012)MathSciNetzbMATHGoogle Scholar
- CS16.Corwin, I., Shen, H.: Open ASEP in the weakly asymmetric regime. CPAM (2018)Google Scholar
- CST18.Corwin, I., Shen, H., Tsai, L.C.: ASEP (q, j) converges to the KPZ equation. Ann. Inst. H. Poincaré Prob. Stat. 54(2), 995–1012 (2018)Google Scholar
- CT15.Corwin I., Tsai L.C.: KPZ equation limit of higher-spin exclusion processes. Ann. Prob. 45(3), 1771–1798 (2015)MathSciNetzbMATHGoogle Scholar
- DDM92.Derrida B., Domany E., Mukamel D.: An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J. Stat. Phys. 69(3-4), 667–687 (1992)ADSMathSciNetzbMATHGoogle Scholar
- DE04.Derrida B., Enaud C.: Large deviation functional of the weakly asymmetric exclusion process. J. Stat. Phys. 114(3-4), 537–562 (2004)ADSMathSciNetzbMATHGoogle Scholar
- DEHP93.Derrida B., Evans M.R., Hakim V., Pasquier V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A Math. Gen. 26(7), 1493–1517 (1993)ADSzbMATHGoogle Scholar
- DEL04.Derrida B., Enaud C., Lebowitz J.: The asymmetric exclusion process and Brownian excursions. J. Stat. Phys. 115(1-2), 365–382 (2004)ADSMathSciNetzbMATHGoogle Scholar
- DELO05.Derrida, B., Enaud, C., Landim, C., Olla, S.: Fluctuations in the weakly asymmetric exclusion process with open boundary conditions. J. Stat. Phys. 118(5–6), 795–811 (2005)Google Scholar
- Der06.Derrida, B.: Matrix Ansatz and large deviations of the density in exclusion processes. In: Proceedings of the ICM, Madrid, pp. 367–382 (2006)Google Scholar
- DG91.Dittrich P., Gärtner J.: A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr. 151(1), 75–93 (1991)MathSciNetzbMATHGoogle Scholar
- DGP17.Diehl J., Gubinelli M., Perkowski N.: The KPZ equation as scaling limit of weakly interacting Brownian bridges. Commun. Math. Phys. 354(2), 549–589 (2016)ADSzbMATHGoogle Scholar
- DMPS89.De Masi A., Presutti A., Scacciatelli E.: The weakly asymmetric simple exclusion process. Ann. Inst. H. Poincaré Prob. Stat. 25(1), 1–38 (1989)MathSciNetzbMATHGoogle Scholar
- DPZ92.Da Prato G., Zabczyk J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
- DS93.Domany E., Schütz G.: Phase transitions in an exactly soluble one-dimensional exclusion process. J. Stat. Phys. 72(1-2), 277–296 (1993)ADSzbMATHGoogle Scholar
- DT16.Dembo A., Tsai L.C.: Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation. Commun. Math. Phys. 341(1), 219–261 (2016)ADSMathSciNetzbMATHGoogle Scholar
- ELS90.Eyink G., Lebowitz J., Spohn H.: Hydrodynamics of stationary nonequilibrium states for some stochastic lattice gas models. Commun. Math. Phys. 132(1), 253–283 (1990)ADSMathSciNetzbMATHGoogle Scholar
- ELS91.Eyink G., Lebowitz J., Spohn H.: Lattice gas models in contact with stochastic reservoirs: local equilibrium and relaxation to the steady state. Commun. Math. Phys. 140(1), 119–131 (1991)ADSMathSciNetzbMATHGoogle Scholar
- Gar88.Gärtner J.: Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stoch. Process. Appl. 27(2), 233–260 (1988)MathSciNetzbMATHGoogle Scholar
- GH17.Gerencsér, M., Hairer, M.: Singular SPDEs in domains with boundaries (2017). arXiv preprint arXiv:1702.06522
- GIP15.Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3 (e6), p. 75 (2015)Google Scholar
- GJ14.Gonçalves P., Jara M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)MathSciNetzbMATHGoogle Scholar
- GLD12.Gueudré T., Le Doussal P.: Directed polymer near a hard wall and KPZ equation in the half-space. Europhys. Lett. 100(2), 26006 (2012)ADSGoogle Scholar
- GLM15.Gonçalves, P., Landim, C., Milanés, A.: Nonequilibrium fluctuations of one-dimensional boundary driven weakly asymmetric exclusion processes. Ann. Appl. Prob. 27(1), 140–177 (2017)Google Scholar
- GP17.Gubinelli M., Perkowski N.: KPZ reloaded. Commun. Math. Phys. 349(1), 165–269 (2017)ADSMathSciNetzbMATHGoogle Scholar
- GP18.Gubinelli M., Perkowski N.: Energy solutions of KPZ are unique. J. Am. Math. Soc. 31, 427–471 (2018)MathSciNetzbMATHGoogle Scholar
- GPS17.Gonçalves, P., Perkowski, N., Simon, M.: Derivation of the stochastic Burgers equation with Dirichlet boundary conditions from WASEP (2017). arXiv preprint arXiv:1710.11011
- Gro04.Grossinsky, S.: Phase transitions in nonequilibrium stochastic particle systems with local conservation laws. PhD Thesis. TU Munich (2004)Google Scholar
- Hai09.Hairer, M.: An introduction to SPDEs (July 2009). arXiv eprint arXiv:0907.4178
- HQ15.Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ (2015). arXiv preprint arXiv:1512.07845
- IM63.Itô K., McKean H.: Brownian motions on a half-line. Ill. J. Math. 7(2), 181–231 (1963)MathSciNetzbMATHGoogle Scholar
- IS04.Imamura T., Sasamoto T.: Fluctuations of the one-dimensional polynuclear growth model in half-space. J. Stat. Phys. 115(3-4), 749–803 (2004)ADSMathSciNetzbMATHGoogle Scholar
- Kar87.Kardar M.: Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nucl. Phys. B 290, 582–602 (1987)ADSMathSciNetGoogle Scholar
- KOV89.Kipnis C., Olla S., Varadhan S.R.S.: Hydrodynamics and large deviation for simple exclusion processes. Commun. Pure Appl. Math. 42(2), 115–137 (1989)MathSciNetzbMATHGoogle Scholar
- Kov14.Kovarik H.: On the lowest eigenvalues of Laplace operators with mixed boundary conditions. J. Geom. Anal. 24(3), 1509–1525 (2014)MathSciNetzbMATHGoogle Scholar
- KS88.Konno N., Shiga T.: Stochastic partial differential equations for some measure-valued diffusions. Prob. Theory Relat. Fields 79(2), 201–225 (1988)MathSciNetzbMATHGoogle Scholar
- Lab17.Labbé C.: Weakly asymmetric bridges and the KPZ equation. Commun. Math. Phys. 353(3), 1261–1298 (2017)ADSMathSciNetzbMATHGoogle Scholar
- Lig75.Liggett T.: Ergodic theorems for the asymmetric simple exclusion process. Trans. Am. Math. Soc. 213, 237–261 (1975)MathSciNetzbMATHGoogle Scholar
- Mue91.Mueller C.: On the support of solutions to the heat equation with noise. Stochastics 37(4), 225–246 (1991)MathSciNetzbMATHGoogle Scholar
- NMW82.Naqvi K., Mork K., Waldenstrom S.: Symmetric random walk on a regular lattice with an elastic barrier: diffusion equation and boundary condition. Chem. Phys. Lett. 92(2), 160–164 (1982)ADSMathSciNetGoogle Scholar
- Pap90.Papanicolaou G.: The probabilistic solution of the third boundary value problem for second order elliptic equations. Prob. Theory Relat. Fields 87, 27–77 (1990)MathSciNetzbMATHGoogle Scholar
- TW94.Tracy C., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)ADSMathSciNetzbMATHGoogle Scholar
- TW96.Tracy C., Widom H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177(3), 727–754 (1996)ADSMathSciNetzbMATHGoogle Scholar
- Wal86.Walsh J.: An introduction to stochastic partial differential equations. Lect. Notes Math. 1180, 265–439 (1986)MathSciNetGoogle Scholar
- Wu18.Wu, X.: Intermediate disorder regime for half-space directed polymers (2018). arXiv preprint arXiv:1804.09815