Advertisement

Communications in Mathematical Physics

, Volume 365, Issue 2, pp 569–649 | Cite as

The KPZ Limit of ASEP with Boundary

  • Shalin ParekhEmail author
Article

Abstract

It was recently proved in Corwin and Shen (CPAM, [CS16]) that under weakly asymmetric scaling, the height functions for ASEP with sources and sinks converges to the Hopf–Cole solution of the KPZ equation with inhomogeneous Neumann boundary conditions. In their assumptions [CS16] chose positive values for the Neumann boundary condition, and they assumed initial data which is close to stationarity. By developing more extensive heat-kernel estimates, we clarify and extend their results to negative values of the Neumann boundary parameters, and we also show how to generalize their results to empty initial data (which is very far from stationarity). Combining our result with Barraquand et al. (Duke Math J, [BBCW17]), we obtain the Laplace transform of the one-point distribution for half-line KPZ, and use this to confirm t1/3-scale GOE Tracy–Widom long-time fluctuations at the origin.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authorwishes to thank Ivan Corwin for suggesting the problem, for providing helpful discussions about various issues which came up during the writing of the paper, for suggesting the free energy heuristic to obtain the limit and T 1/2-fluctuations in the low-density regime, and also for thoroughly reading the first four preliminary drafts of this paper. We also wish to thank Hao Shen and Li-Cheng Tsai, who provided some very useful discussions. The author was partially supported by the Fernholz Foundation’s “Summer Minerva Fellows” program, as well as summer support from Ivan Corwin’s NSF Grant DMS:1811143.

References

  1. ACQ11.
    Amir G., Corwin I., Quastel J.: Probability distribution of the free energy of the continuum directed random polymer in 1 +  1 dimensions. Commun. Pure Appl. Math. 64, 466 (2011)MathSciNetzbMATHGoogle Scholar
  2. AKQ13.
    Alberts, T., Khanin, K., Quastel, J.: The continuum directed random polymer. J. Stat. Phys. 154(1–2), (2014)Google Scholar
  3. BBC16.
    Borodin, A., Bufetov, A., Corwin, I.: Directed random polymers via nested contour integrals (2016). arXiv preprint. arXiv:1511.07324
  4. BBC18.
    Barraquand, G., Borodin, A., Corwin, I.: Half-space Macdonald processes (2018). arXiv preprint arXiv:1802.08210
  5. BBCS16.
    Baik, J., Barraquand, G., Corwin, I., Suidan, T.: Pfaffian Schur proceses and last passage percolation in a half-quadrant (2016). arXiv preprint. arXiv:1606.00525
  6. BBCW17.
    Barraquand, G., Borodin, A., Corwin, I., Wheeler, M.: Stochastic six-vertex model in a half-quadrant and half-line open ASEP. Duke Math. J. (2018). arXiv:1704.04309v2
  7. BC14.
    Borodin A., Corwin I.: Macdonald processes. Prob. Theory Relat. Fields 158(1-2), 225–400 (2014)MathSciNetzbMATHGoogle Scholar
  8. BD06.
    Bodineau T., Derrida B.: Current large deviations for asymmetric exclusion processes with open boundaries. J. Stat. Phys. 123(2), 277–300 (2006)ADSMathSciNetzbMATHGoogle Scholar
  9. BG16.
    Borodin A., Gorin V.: Moments match between the KPZ equation and the airy point process. SIGMA 12(102), 1–7 (2016)MathSciNetzbMATHGoogle Scholar
  10. BG97.
    Bertini L., Giacomin G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)ADSMathSciNetzbMATHGoogle Scholar
  11. Bil97.
    Billingsley P.: Convergence of Probability Measures. Wiley, Hoboken (1997)zbMATHGoogle Scholar
  12. Bor18.
    Borodin A.: Stochastic higher spin six vertex model and Macdonald measures. J. Math. Phys. 59(2), 023301 (2018)ADSMathSciNetzbMATHGoogle Scholar
  13. BR01.
    Baik, J., Rains, E.: The asymptotics of monotone subsequences of involutions. Duke Math. J. 109(2), 205–281 (2001)Google Scholar
  14. CG18.
    Corwin, I., Ghosal, P.: Lower tail of the KPZ equation (2018). arXiv preprint arXiv:1802.03273
  15. Cor12.
    Corwin I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1(01), 1130001 (2012)MathSciNetzbMATHGoogle Scholar
  16. CS16.
    Corwin, I., Shen, H.: Open ASEP in the weakly asymmetric regime. CPAM (2018)Google Scholar
  17. CST18.
    Corwin, I., Shen, H., Tsai, L.C.: ASEP (q, j) converges to the KPZ equation. Ann. Inst. H. Poincaré Prob. Stat. 54(2), 995–1012 (2018)Google Scholar
  18. CT15.
    Corwin I., Tsai L.C.: KPZ equation limit of higher-spin exclusion processes. Ann. Prob. 45(3), 1771–1798 (2015)MathSciNetzbMATHGoogle Scholar
  19. DDM92.
    Derrida B., Domany E., Mukamel D.: An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J. Stat. Phys. 69(3-4), 667–687 (1992)ADSMathSciNetzbMATHGoogle Scholar
  20. DE04.
    Derrida B., Enaud C.: Large deviation functional of the weakly asymmetric exclusion process. J. Stat. Phys. 114(3-4), 537–562 (2004)ADSMathSciNetzbMATHGoogle Scholar
  21. DEHP93.
    Derrida B., Evans M.R., Hakim V., Pasquier V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A Math. Gen. 26(7), 1493–1517 (1993)ADSzbMATHGoogle Scholar
  22. DEL04.
    Derrida B., Enaud C., Lebowitz J.: The asymmetric exclusion process and Brownian excursions. J. Stat. Phys. 115(1-2), 365–382 (2004)ADSMathSciNetzbMATHGoogle Scholar
  23. DELO05.
    Derrida, B., Enaud, C., Landim, C., Olla, S.: Fluctuations in the weakly asymmetric exclusion process with open boundary conditions. J. Stat. Phys. 118(5–6), 795–811 (2005)Google Scholar
  24. Der06.
    Derrida, B.: Matrix Ansatz and large deviations of the density in exclusion processes. In: Proceedings of the ICM, Madrid, pp. 367–382 (2006)Google Scholar
  25. DG91.
    Dittrich P., Gärtner J.: A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr. 151(1), 75–93 (1991)MathSciNetzbMATHGoogle Scholar
  26. DGP17.
    Diehl J., Gubinelli M., Perkowski N.: The KPZ equation as scaling limit of weakly interacting Brownian bridges. Commun. Math. Phys. 354(2), 549–589 (2016)ADSzbMATHGoogle Scholar
  27. DMPS89.
    De Masi A., Presutti A., Scacciatelli E.: The weakly asymmetric simple exclusion process. Ann. Inst. H. Poincaré Prob. Stat. 25(1), 1–38 (1989)MathSciNetzbMATHGoogle Scholar
  28. DPZ92.
    Da Prato G., Zabczyk J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  29. DS93.
    Domany E., Schütz G.: Phase transitions in an exactly soluble one-dimensional exclusion process. J. Stat. Phys. 72(1-2), 277–296 (1993)ADSzbMATHGoogle Scholar
  30. DT16.
    Dembo A., Tsai L.C.: Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation. Commun. Math. Phys. 341(1), 219–261 (2016)ADSMathSciNetzbMATHGoogle Scholar
  31. ELS90.
    Eyink G., Lebowitz J., Spohn H.: Hydrodynamics of stationary nonequilibrium states for some stochastic lattice gas models. Commun. Math. Phys. 132(1), 253–283 (1990)ADSMathSciNetzbMATHGoogle Scholar
  32. ELS91.
    Eyink G., Lebowitz J., Spohn H.: Lattice gas models in contact with stochastic reservoirs: local equilibrium and relaxation to the steady state. Commun. Math. Phys. 140(1), 119–131 (1991)ADSMathSciNetzbMATHGoogle Scholar
  33. Gar88.
    Gärtner J.: Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stoch. Process. Appl. 27(2), 233–260 (1988)MathSciNetzbMATHGoogle Scholar
  34. GH17.
    Gerencsér, M., Hairer, M.: Singular SPDEs in domains with boundaries (2017). arXiv preprint arXiv:1702.06522
  35. GIP15.
    Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3 (e6), p. 75 (2015)Google Scholar
  36. GJ14.
    Gonçalves P., Jara M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)MathSciNetzbMATHGoogle Scholar
  37. GLD12.
    Gueudré T., Le Doussal P.: Directed polymer near a hard wall and KPZ equation in the half-space. Europhys. Lett. 100(2), 26006 (2012)ADSGoogle Scholar
  38. GLM15.
    Gonçalves, P., Landim, C., Milanés, A.: Nonequilibrium fluctuations of one-dimensional boundary driven weakly asymmetric exclusion processes. Ann. Appl. Prob. 27(1), 140–177 (2017)Google Scholar
  39. GP17.
    Gubinelli M., Perkowski N.: KPZ reloaded. Commun. Math. Phys. 349(1), 165–269 (2017)ADSMathSciNetzbMATHGoogle Scholar
  40. GP18.
    Gubinelli M., Perkowski N.: Energy solutions of KPZ are unique. J. Am. Math. Soc. 31, 427–471 (2018)MathSciNetzbMATHGoogle Scholar
  41. GPS17.
    Gonçalves, P., Perkowski, N., Simon, M.: Derivation of the stochastic Burgers equation with Dirichlet boundary conditions from WASEP (2017). arXiv preprint arXiv:1710.11011
  42. Gro04.
    Grossinsky, S.: Phase transitions in nonequilibrium stochastic particle systems with local conservation laws. PhD Thesis. TU Munich (2004)Google Scholar
  43. Hai09.
    Hairer, M.: An introduction to SPDEs (July 2009). arXiv eprint arXiv:0907.4178
  44. HQ15.
    Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ (2015). arXiv preprint arXiv:1512.07845
  45. IM63.
    Itô K., McKean H.: Brownian motions on a half-line. Ill. J. Math. 7(2), 181–231 (1963)MathSciNetzbMATHGoogle Scholar
  46. IS04.
    Imamura T., Sasamoto T.: Fluctuations of the one-dimensional polynuclear growth model in half-space. J. Stat. Phys. 115(3-4), 749–803 (2004)ADSMathSciNetzbMATHGoogle Scholar
  47. Kar87.
    Kardar M.: Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nucl. Phys. B 290, 582–602 (1987)ADSMathSciNetGoogle Scholar
  48. KOV89.
    Kipnis C., Olla S., Varadhan S.R.S.: Hydrodynamics and large deviation for simple exclusion processes. Commun. Pure Appl. Math. 42(2), 115–137 (1989)MathSciNetzbMATHGoogle Scholar
  49. Kov14.
    Kovarik H.: On the lowest eigenvalues of Laplace operators with mixed boundary conditions. J. Geom. Anal. 24(3), 1509–1525 (2014)MathSciNetzbMATHGoogle Scholar
  50. KS88.
    Konno N., Shiga T.: Stochastic partial differential equations for some measure-valued diffusions. Prob. Theory Relat. Fields 79(2), 201–225 (1988)MathSciNetzbMATHGoogle Scholar
  51. Lab17.
    Labbé C.: Weakly asymmetric bridges and the KPZ equation. Commun. Math. Phys. 353(3), 1261–1298 (2017)ADSMathSciNetzbMATHGoogle Scholar
  52. Lig75.
    Liggett T.: Ergodic theorems for the asymmetric simple exclusion process. Trans. Am. Math. Soc. 213, 237–261 (1975)MathSciNetzbMATHGoogle Scholar
  53. Mue91.
    Mueller C.: On the support of solutions to the heat equation with noise. Stochastics 37(4), 225–246 (1991)MathSciNetzbMATHGoogle Scholar
  54. NMW82.
    Naqvi K., Mork K., Waldenstrom S.: Symmetric random walk on a regular lattice with an elastic barrier: diffusion equation and boundary condition. Chem. Phys. Lett. 92(2), 160–164 (1982)ADSMathSciNetGoogle Scholar
  55. Pap90.
    Papanicolaou G.: The probabilistic solution of the third boundary value problem for second order elliptic equations. Prob. Theory Relat. Fields 87, 27–77 (1990)MathSciNetzbMATHGoogle Scholar
  56. TW94.
    Tracy C., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)ADSMathSciNetzbMATHGoogle Scholar
  57. TW96.
    Tracy C., Widom H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177(3), 727–754 (1996)ADSMathSciNetzbMATHGoogle Scholar
  58. Wal86.
    Walsh J.: An introduction to stochastic partial differential equations. Lect. Notes Math. 1180, 265–439 (1986)MathSciNetGoogle Scholar
  59. Wu18.
    Wu, X.: Intermediate disorder regime for half-space directed polymers (2018). arXiv preprint arXiv:1804.09815

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Columbia UniversityNew YorkUSA

Personalised recommendations