Communications in Mathematical Physics

, Volume 364, Issue 1, pp 83–121 | Cite as

Capacity Estimates via Comparison with TRO Channels

  • Li GaoEmail author
  • Marius Junge
  • Nicholas LaRacuente


A ternary ring of operators (TRO) in finite dimensions is an operator space as an orthogonal sum of rectangular matrices. TROs correspond to quantum channels that are diagonal sums of partial traces, we call TRO channels. TRO channels have simple, single-letter entropy expressions for quantum, private, and classical capacity. Using operator space and interpolation techniques,we perturbatively estimate capacities, capacity regions, and strong converse rates for a wider class of quantum channels by comparison to TRO channels.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thankMarkM.Wilde for helpful discussions and comments.We thank the anonymous referees for the careful reading and constructive suggestions.


  1. 1.
    Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A.: The mother of all protocols: restructuring quantum informations family tree. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p. rspa20090202. The Royal Society (2009)Google Scholar
  2. 2.
    Aubrun G., Szarek S., Werner E.: Hastingss additivity counterexample via Dvoretzkys theorem. Commun. Math. Phys. 305(1), 85–97 (2011)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Audenaert K., De Moor B., Vollbrecht K.G.H., Werner R.F.: Asymptotic relative entropy of entanglement for orthogonally invariant states. Phys. Rev. A 66(3), 032310 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Bennett C.H., DiVincenzo D.P., Smolin J.A.: Capacities of quantum erasure channels. Phys. Rev. Lett. 78(16), 3217 (1997)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83(15), 3081 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Bergh J., Löfström J.: Interpolation Spaces: An Introduction. Springer, Berlin (1976)CrossRefGoogle Scholar
  7. 7.
    Berta M., Brandao F.G., Christandl M., Wehner S.: Entanglement cost of quantum channels. IEEE Trans. Inf. Theory 59(10), 6779–6795 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Berta M., Wilde M.M.: Amortization does not enhance the max-Rains information of a quantum channel. New J. Phys. 20(5), 053044 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Brown L., Green P., Rieffel M.: Stable isomorphism and strong morita equivalence of C*-algebras. Pac. J. Math. 71(2), 349–363 (1977)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Christandl M., Müller Hermes A.: Relative entropy bounds on quantum, private and repeater capacities. Commun. Math. Phys. 353(2), 821–852 (2017)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Collins D., Popescu S.: Classical analog of entanglement. Phys. Rev. A 65(3), 032321 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Crann J., Neufang M.: Quantum channels arising from abstract harmonic analysis. J. Phys. A Math. Theor. 46(4), 045308 (2013)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Cubitt T., Elkouss D., Matthews W., Ozols M., Pérez-Garcia D., Strelchuk S.: Unbounded number of channel uses may be required to detect quantum capacity. Nat. Commun. 6, 6739 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Devetak I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51(1), 44–55 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Devetak I., Junge M., King C., Ruskai M.B.: Multiplicativity of completely bounded p-norms implies a new additivity result. Commun. Math. Phys. 266(1), 37–63 (2006)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Devetak I., Shor P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256, 287303 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Effros E.G., Ozawa N., Ruan Z.: On injectivity and nuclearity for operator spaces. Duke Math. J. 110(3), 489–521 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Effros E.G., Ruan Z.: Operator Spaces, vol. 23. Oxford University Press on Demand. Oxford University Press on Demand, Oxford (2000)Google Scholar
  19. 19.
    Elkouss D., Strelchuk S.: Superadditivity of private information for any number of uses of the channel. Phys. Rev. Lett. 115(4), 040501 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Fukuda M., Wolf M.M.: Simplifying additivity problems using direct sum constructions. J. Math. Phys. 48(7), 072101 (2007)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Garcia-Patrón R., Pirandola S., Lloyd S., Shapiro J.H.: Reverse coherent information. Phys. Rev. Lett. 102(21), 210501 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Gupta M.K., Wilde M.M.: Multiplicativity of completely bounded p-norms implies a strong converse for entanglement-assisted capacity. Commun. Math. Phys. 334(2), 867–887 (2015)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Hastings, M.B.: A counterexample to additivity of minimum output entropy. arXiv preprint arXiv:0809.3972 (2008)
  24. 24.
    Hestenes M.R.: A ternary algebra with applications to matrices and linear transformations. Arch. Ration. Mech. Anal. 11(1), 138–194 (1962)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Holevo A.: Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii 9(3), 3–11 (1973)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Holevo A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 44(1), 269–273 (1998)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Holevo A.S., Werner R.F.: Evaluating capacities of bosonic gaussian channels. Phys. Rev. A 63(3), 032312 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    Junge, M., Neufang, M., Ruan, Z.: Reversed coherent information for quantum group channels. Unpublished notes (2009)Google Scholar
  29. 29.
    Junge M., Xu Q.: Noncommutative Burkholder/Rosenthal inequalities. Ann. Probab 31, 948–995 (2003)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kaur M., Ruan Z.: Local properties of ternary rings of operators and their linking C*-algebras. J. Funct. Anal. 195(2), 262–305 (2002)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Knapp A.W.: Representation Theory of Semisimple Groups: An Overview Based on Examples (PMS-36). Princeton University Press, Princeton (2016)Google Scholar
  32. 32.
    Kosaki H.: Applications of the complex interpolation method to a von Neumann algebra: Non commutative l p-spaces. J. Funct. Anal. 56(1), 29–78 (1984)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Li K., Winter A., Zou X., Guo G.: Private capacity of quantum channels is not additive. Phys. Rev. Lett. 103(12), 120501 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Lloyd S.: Capacity of the noisy quantum channel. Phys. Rev. A 55(3), 1613 (1997)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Müller-Hermes A., Reeb D., Wolf M.M.: Positivity of linear maps under tensor powers. J. Math. Phys. 57(1), 015202 (2016)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M.: On quantum Rényi entropies: A new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Ng P.W., Ozawa N.: A characterization of completely 1-complemented subspaces of noncommutative L 1-spaces. Pac. J. Math. 205(1), 171–195 (2002)CrossRefGoogle Scholar
  38. 38.
    Paulsen V.: Completely Bounded Maps and Operator Algebras. vol. 78. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  39. 39.
    Pirandola S., Laurenza R., Ottaviani C., Banchi L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Pisier, G.: Non-commutative vector valued L p-spaces and completely p-summing maps. Asterisque-Societe Mathematique de France 247 (1998)Google Scholar
  41. 41.
    Pisier G.: Introduction to Operator Space Theory, vol. 294. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  42. 42.
    Rains E.M.: Bound on distillable entanglement. Phys. Rev. A 60(1), 179 (1999)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Rains E.M.: A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theory 47(7), 2921–2933 (2001)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Schumacher B., Westmoreland M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(1), 131 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    Shannon C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Shor, P.W.: The quantum channel capacity and coherent information. In: lecture notes, MSRI Workshop on Quantum Computation (2002)Google Scholar
  47. 47.
    Smith G.: Private classical capacity with a symmetric side channel and its application to quantum cryptography. Phys. Rev. A 78(2), 022306 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    Smith G., Smolin J.A.: Degenerate quantum codes for pauli channels. Phys. Rev. Lett. 98(3), 030501 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    Smith G., Smolin J.A., Winter A.: The quantum capacity with symmetric side channels. IEEE Trans. Inf. Theory 54(9), 4208–4217 (2008)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Smith G., Yard J.: Quantum communication with zero-capacity channels. Science 321(5897), 1812–1815 (2008)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Sutter D., Scholz V.B., Winter A., Renner R.: Approximate degradable quantum channels. IEEE Trans. Inf. Theory 63(12), 7832–7844 (2017)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Takeoka M., Guha S., Wilde M.M.: The squashed entanglement of a quantum channel. IEEE Trans. Inf. Theory 60(8), 4987–4998 (2014)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Tomamichel M., Wilde M.M., Winter A.: Strong converse rates for quantum communication. IEEE Trans. Inf. Theory 63(1), 715–727 (2017)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Wang, X., Duan, R.: A semidefinite programming upper bound of quantum capacity. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1690–1694. IEEE (2016)Google Scholar
  55. 55.
    Wang, X., Fang, K., Duan, R.: Semidefinite programming converse bounds for quantum communication. arXiv preprint arXiv:1709.00200 (2017)
  56. 56.
    Wilde M.M.: Quantum Information Ttheory. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  57. 57.
    Wilde M.M.: Squashed entanglement and approximate private states. Quantum Inf. Process. 15(11), 4563–4580 (2016)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Wilde M.M., Hsieh M.: Public and private resource trade-offs for a quantum channel. Quantum Inf. Process. 11(6), 1465–1501 (2012)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Wilde M.M., Hsieh M.: The quantum dynamic capacity formula of a quantum channel. Quantum Inf. Process. 11(6), 1431–1463 (2012)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Wilde M.M., Tomamichel M., Berta M.: Converse bounds for private communication over quantum channels. IEEE Trans. Inf. Theory 63(3), 1792–1817 (2017)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Wilde M.M., Winter A., Yang D.: Strong converse for the classical capacity of entanglement-breaking and hadamard channels via a sandwiched rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    Winter A., Yang D.: Potential capacities of quantum channels. IEEE Trans. Inf. Theory 62(3), 1415–1424 (2016)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Zettl H.: A characterization of ternary rings of operators. Adv. Math. 48(2), 117–143 (1983)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA
  2. 2.Department of PhysicsUniversity of IllinoisUrbanaUSA

Personalised recommendations