Advertisement

Communications in Mathematical Physics

, Volume 365, Issue 2, pp 741–772 | Cite as

Tau Functions as Widom Constants

  • M. Cafasso
  • P. Gavrylenko
  • O. LisovyyEmail author
Article

Abstract

We define a tau function for a generic Riemann–Hilbert problem posed on a union of non-intersecting smooth closed curves with jump matrices analytic in their neighborhood. The tau function depends on parameters of the jumps and is expressed as the Fredholm determinant of an integral operator with block integrable kernel constructed in terms of elementary parametrices. Its logarithmic derivatives with respect to parameters are given by contour integrals involving these parametrices and the solution of the Riemann–Hilbert problem. In the case of one circle, the tau function coincides with Widom’s determinant arising in the asymptotics of block Toeplitz matrices. Our construction gives the Jimbo–Miwa–Ueno tau function for Riemann–Hilbert problems of isomonodromic origin (Painlevé VI, V, III, Garnier system, etc) and the Sato–Segal–Wilson tau function for integrable hierarchies such as Gelfand–Dickey and Drinfeld–Sokolov.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank M. Bertola, T. Grava, Y. Haraoka, N. Iorgov, A. Its, K. Iwaki, H. Nagoya, A. Prokhorov, and V. Roubtsov for useful discussions. The present work was supported by the PHC Sakura Grant No. 36175WA and CNRS/PICS project, “Isomonodromic deformations and conformal field theory”. The work of P.G. was partially supported the Russian Academic Excellence Project ‘5-100’ and by the RSF Grant No. 16-11-10160. In particular, results of Subsection 3.1 have been obtained using support of Russian Science Foundation. P.G. is a Young Russian Mathematics award winner and would like to thank its sponsors and jury. M.C. acknowledges the support of the project IPaDEGAN (H2020-MSCA-RISE-2017), Grant No. 778010.

References

  1. ACvM.
    Adler, M., Cafasso, M., van Moerbeke, P.: Nonlinear PDEs for Fredholm determinants arising from string equations. In: Algebraic and Geometric Aspects of Integrable Systems and Random Matrices. AMS Contemporary Mathematics 593 (2013)Google Scholar
  2. BD.
    Balogh F., Yang D.: Geometric interpretation of Zhou’s explicit formula for the Witten–Kontsevich tau function. Lett. Math. Phys. 107, 1837–1857 (2017) arXiv:1412.4419 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  3. BW.
    Basor E.L., Widom H.: On a Toeplitz determinant identity of Borodin and Okounkov. Integr. Equ. Oper. Theory 37, 397–401 (2000) arXiv:math/9909010v3 [math.FA]MathSciNetzbMATHGoogle Scholar
  4. BSh.
    Bershtein M., Shchechkin A.: q-deformed Painlevé tau function and q-deformed conformal blocks. J. Phys. A 50, 085202 (2017)ADSMathSciNetzbMATHGoogle Scholar
  5. Ber1.
    Bertola M.: The dependence on the monodromy data of the isomonodromic tau function. Commun. Math. Phys. 294, 539–579 (2010) arXiv:0902.4716 [nlin.SI]; corrigendum: arXiv:1601.04790 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  6. Ber2.
    Bertola M.: The Malgrange form and Fredholm determinants. SIGMA 13, 046 (2017) arXiv:1703.00046 [math-ph]MathSciNetzbMATHGoogle Scholar
  7. BLMST.
    Bonelli G., Lisovyy O., Maruyoshi K., Sciarappa A., Tanzini A.: On Painlevé/gauge theory correspondence. Lett. Math. Phys. 107, 2359–2413 (2017)ADSMathSciNetzbMATHGoogle Scholar
  8. BO.
    Borodin A., Okounkov A.: A Fredholm determinant formula for Toeplitz determinants. Integr. Equ. Oper. Theory 37, 386–396 (2000) arXiv:math/9907165 [math.CA]MathSciNetzbMATHGoogle Scholar
  9. Caf.
    Cafasso M.: Block Toeplitz determinants, constrained KP and Gelfand–Dickey hierarchies. Math. Phys. Anal. Geom. 11, 11–51 (2008) arXiv:0711.2248 [math.FA]MathSciNetzbMATHGoogle Scholar
  10. CDD.
    Cafasso, M., Du Crest de Villeneuve, A., Yang, D.: Drinfeld–Sokolov hierarchies, tau functions, and generalized Schur polynomials, (2017). arXiv:1709.07309
  11. CW1.
    Cafasso M., Wu C.-Z.: Tau functions and the limit of block Toeplitz determinants.. Int. Math. Res. Not. 2015, 10339–10366 (2015) arXiv:1404.5149 [math-ph]MathSciNetzbMATHGoogle Scholar
  12. CW2.
    Cafasso, M., Wu, C.-Z.: Borodin-Okounkov formula, string equation and topological solutions of Drinfeld–Sokolov hierarchies (2015). arXiv:1505.00556
  13. CM.
    Chekhov L., Mazzocco M.: Colliding holes in Riemann surfaces and quantum cluster algebras. Nonlinearity 31(1), 54–107 (2017) arXiv:1509.07044 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  14. CMR.
    Chekhov, L., Mazzocco, M., Rubtsov, V.: Painlevé monodromy manifolds, decorated character varieties and cluster algebras, Int. Math. Res. Not., rnw219 (2016). arXiv:1511.03851 [math-ph]
  15. DIK.
    Deift P., Its A., Krasovsky I.: Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results. Commun. Pure Appl. Math. 66, 1360–1438 (2013)MathSciNetzbMATHGoogle Scholar
  16. DS.
    Drinfeld V.G., Sokolov V.V.: Lie algebras and equations of Korteweg–de Vries type. J. Math. Sci. 30, 1975–2036 (1985)zbMATHGoogle Scholar
  17. DMN.
    Dubrovin B., Matveev V., Novikov S.: Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties. Russ. Math. Surv. 31, 59–146 (1976)zbMATHGoogle Scholar
  18. DZ.
    Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants (2001). arXiv:math/0108160 [hep-th]
  19. EH.
    Enolski V., Harnad J.: Schur function expansions of KP \({\tau}\)-functions associated to algebraic curves. Russ. Math. Surv. 66, 767–807 (2011) arXiv:1012.3152 [math-ph]Google Scholar
  20. Eyn.
    Eynard, B.: The Geometry of integrable systems. Tau functions and homology of spectral curves. Perturbative definition arXiv:1706.04938
  21. FIKN.
    Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Y.: Painlevé Transcendents: The Riemann–Hilbert Approach. Mathematical Surveys and Monographs, 128. AMS, Providence (2006)Google Scholar
  22. GIL12.
    Gamayun O., Iorgov N., Lisovyy O.: Conformal field theory of Painlevé VI. J. High Energy Phys. 2012, 38 (2012) arXiv:1207.0787 [hep-th]zbMATHGoogle Scholar
  23. GIL13.
    Gamayun O., Iorgov N., Lisovyy O.: How instanton combinatorics solves Painlevé VI, V and III’s. J. Phys. A 46, 335203 (2013) arXiv:1302.1832 [hep-th]MathSciNetzbMATHGoogle Scholar
  24. GL16.
    Gavrylenko, P., Lisovyy, O.: Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions (2016). arXiv:1608.00958 [math-ph]
  25. GL17.
    Gavrylenko P., Lisovyy O.: Pure SU(2) gauge theory partition function and generalized Bessel kernel. Proc. Symp. Pure Math. 98(2018), 181–206 (2017) arXiv:1705.01869 [math-ph]MathSciNetGoogle Scholar
  26. IJK.
    Its A.R., Jin B.-Q., Korepin V.E.: Entropy of XY spin chain and block Toeplitz determinants, in “Universality and renormalization”. Fields Inst. Commun. 50, 151–183 (2007)zbMATHGoogle Scholar
  27. ILP.
    Its, A. R., Lisovyy, O., Prokhorov, A.: Monodromy dependence and connection formulae for isomonodromic tau functions. Duke Math. J. 167(7), 1347–1432 (2018). arXiv:1604.03082 [math-ph]
  28. IMM.
    Its A.R., Mezzadri F., Mo M.Y.: Entanglement entropy in quantum spin chains with finite range interaction. Commun. Math. Phys. 284, 117–185 (2008) arXiv:0708.0161 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  29. Jim.
    Jimbo M.: Monodromy problem and the boundary condition for some Painlevé equations. Publ. Res. Inst. Math. Sci. 18, 1137–1161 (1982)MathSciNetzbMATHGoogle Scholar
  30. JMU.
    Jimbo M., Miwa T., Ueno K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I.. Physica D 2, 306–352 (1981)ADSMathSciNetzbMATHGoogle Scholar
  31. JNS.
    Jimbo M., Nagoya H., Sakai H.: CFT approach to the q-Painlevé VI equation. J. Int. Syst. 2, xyx009 (2017) arXiv:1706.01940 [math-ph]zbMATHGoogle Scholar
  32. Kac.
    Kac V.: Infinite-Dimensional Lie Algebras. Cambridge Univ. Press, Cambridge (1994)Google Scholar
  33. KS.
    Kac V., Schwarz A.: Geometric interpretation of the partition function of 2D gravity. Phys. Lett. B 257, 329–334 (1991)ADSMathSciNetGoogle Scholar
  34. Kon.
    Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)ADSMathSciNetzbMATHGoogle Scholar
  35. Kov.
    Kowalevskaya S.V.: Sur une propriété du système d’équations différentielles qui définit la rotation d’un corps solide autour d’un point fixe. Acta Math. 14, 81–93 (1890)MathSciNetGoogle Scholar
  36. Mac.
    Macdonald I.G.: Symmetric Functions and Hall Polynomials. Oxford Univ. Press, Oxford (1998)zbMATHGoogle Scholar
  37. Mal.
    Malgrange, B.: Sur les déformations isomonodromiques, I. Singularités régulières, in “Mathematics and Physics”, (Paris, 1979/1982); Prog. Math. 37, 401–426 (1983)Google Scholar
  38. Mat.
    Matveev V.: 30 years of finite-gap integration theory. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 366(1867), 837–875 (2008)ADSMathSciNetzbMATHGoogle Scholar
  39. Moo.
    Moore G.: Geometry of the string equations. Commun. Math. Phys. 133(2), 261–304 (1990)ADSMathSciNetzbMATHGoogle Scholar
  40. Nag.
    Nagoya H.: Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations. J. Math. Phys. 56, 123505 (2015) arXiv:1505.02398v3 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  41. Nek.
    Nekrasov N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2003) arXiv:hep-th/0206161 MathSciNetzbMATHGoogle Scholar
  42. NO.
    Nekrasov, N., Okounkov, A.: Seiberg–Witten theory and random partitions. In: The Unity of Mathematics, pp. 525–596, Progr. Math. 244 (2006). arXiv:hep-th/0306238
  43. Pal.
    Palmer J.: Tau functions for the Dirac operator in the Euclidean plane. Pac. J. Math. 160, 259–342 (1993)MathSciNetzbMATHGoogle Scholar
  44. Ple.
    Plemelj J.: Problems in the Sense of Riemann and Klein. Wiley, Hoboken (1964)zbMATHGoogle Scholar
  45. Rie.
    Riemann B.: Theorie der Abel’schen functionen. J. Reine Angew. Math. 54, 101–155 (1857)MathSciNetGoogle Scholar
  46. Sato.
    Sato M.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifold. North-Holland Math. Stud. 81, 259–271 (1983)MathSciNetzbMATHGoogle Scholar
  47. SW.
    Segal G., Wilson G.: Loop groups and equations of KdV type. Publ. Math. IHES 61, 5–65 (1985)MathSciNetzbMATHGoogle Scholar
  48. Sz.
    Szegő G.: On certain Hermitian forms associated with the Fourier series of a positive function. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952, 228–238 (1952)MathSciNetzbMATHGoogle Scholar
  49. TW.
    Tracy C. A., Widom H.: Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163, 33–72 (1994)ADSMathSciNetzbMATHGoogle Scholar
  50. W1.
    Widom H.: Asymptotic behavior of block Toeplitz matrices and determinants. Adv. Math. 13, 284–322 (1974)MathSciNetzbMATHGoogle Scholar
  51. W2.
    Widom H.: Asymptotic behavior of block Toeplitz matrices and determinants. II. Adv. Math. 21, 1–29 (1976)ADSMathSciNetzbMATHGoogle Scholar
  52. Wil.
    Wilson G.: Collisions of Calogero–Moser particles and an adelic Grassmannian. Invent. Math. 133(1), 1–41 (1998)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LAREMAUniversité d’AngersAngersFrance
  2. 2.Center for Advanced StudiesSkolkovo Institute of Science and TechnologyMoscowRussia
  3. 3.Department of Mathematics and International Laboratory of Representation Theory and Mathematical PhysicsNational Research University Higher School of EconomicsMoscowRussia
  4. 4.Bogolyubov Institute for Theoretical PhysicsKyivUkraine
  5. 5.Laboratoire de Mathématiques et Physique Théorique CNRS/UMR 7350Université de ToursToursFrance

Personalised recommendations