Advertisement

Contextuality and Noncommutative Geometry in Quantum Mechanics

  • Nadish de SilvaEmail author
  • Rui Soares Barbosa
Open Access
Article
  • 94 Downloads

Abstract

Observable properties of a classical physical system can be modelled deterministically as functions from the space of pure states to outcome values; dually, states can be modelled as functions from the algebra of observables to outcome values. The probabilistic predictions of quantum physics are contextual in that they preclude this classical assumption of reality: noncommuting observables, which are not assumed to be jointly measurable, cannot be consistently ascribed deterministic values even if one enriches the description of a quantum state. Here, we consider the geometrically dual objects of noncommutative operator algebras of observables as being generalisations of classical (deterministic) state spaces to the quantum setting and argue that these generalised state spaces represent the objects of study of noncommutative operator geometry. By adapting the spectral presheaf of Hamilton–Isham–Butterfield, a formulation of quantum state space that collates contextual data, we reconstruct tools of noncommutative geometry in an explicitly geometric fashion. In this way, we bridge the foundations of quantum mechanics with the foundations of noncommutative geometry à la Connes et al. To each unital C*- algebra \({\mathcal{A}}\) we associate a geometric object—a diagram of topological spaces collating quotient spaces of the noncommutative space underlying \({\mathcal{A}}\)—that performs the role of a generalised Gel'fand spectrum. We show how any functor F from compact Hausdorff spaces to a suitable target category \({\mathsf{C}}\) can be applied directly to these geometric objects to automatically yield an extension \({\tilde{F}}\) acting on all unital C*-algebras. This procedure is used to give a novel formulation of the operator K0-functor via a finitary variant \({\tilde{K}_{ f}}\) of the extension \({\tilde{K}}\) of the topological K-functor. We then delineate a C*-algebraic conjecture that the extension of the functor that assigns to a topological space its lattice of open sets assigns to a unital C*-algebra the Zariski topological lattice of its primitive ideal spectrum, i.e. its lattice of closed two-sided ideals. We prove the von Neumann algebraic analogue of this conjecture.

References

  1. 1.
    Abramsky S., Brandenburger A.: The sheaf-theoretic structure of non-locality and contextuality. New J. Phys. 13(11), 113036 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Acín A., Fritz T., Leverrier A., Sainz A.B.: A combinatorial approach to nonlocality and contextuality. Commun. Math. Phys. 334(2), 533–628 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Adámek J., Herrlich H., Strecker George E.: Abstract and Concrete Categories: The Joy of Cats. Wiley- Interscience, Hoboken (1990)zbMATHGoogle Scholar
  4. 4.
    Adams J.F.: Vector fields on spheres. Ann. Math. 75(3), 603–632 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Akemann C.A.: Left ideal structure of C*-algebras. J. Funct. Anal. 6(2), 305–317 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Alfsen E.M.: On the Dirichlet problem of the Choquet boundary. Acta Math. 120(1), 149–159 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Alfsen E.M., Shultz F.W.: State Spaces of Operator Algebras: Basic Theory, Orientations, and C*-Products, Mathematics: Theory & Applications. Birkhäuser, Basel (2001)zbMATHGoogle Scholar
  8. 8.
    Atiyah M.F., Anderson D.W.: K-Theory. W. A. Benjamin, New York (1967)Google Scholar
  9. 9.
    Atiyah M.F., Bott R.: On the periodicity theorem for complex vector bundles. Acta Math. 112(1), 229–247 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Awodey S., Forssell H.: First-order logical duality. Ann. Pure Appl. Logic 164(3), 319–348 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Barbosa, R.S.: Contextuality in quantum mechanics and beyond. DPhil Thesis, University of Oxford (2015)Google Scholar
  12. 12.
    Bell J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3), 447–452 (1966)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bichteler K.: A generalization to the non-separable case of Takesaki’s duality theorem for C*- algebras. Invent. Math. 9(1), 89–98 (1969)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Blackadar B.: Operator Algebras: Theory of C*-Algebras and von Neumann Algebras Encyclopaedia of Mathematical Sciences, vol. 122. Springer, Berlin (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Bohr, N.: Discussion with Einstein on epistemological problems in atomic physics. In: Schilpp, P.A. (ed.) Albert Einstein: Philosopher-Scientist. The Library of Living Philosophers, vol. 7, , pp. 199–241. Northwestern University, Evanston (1949)Google Scholar
  16. 16.
    Bratteli O.: Inductive limits of finite dimensional C*-algebras. Trans. Am. Math. Soc. 171, 195–234 (1972)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Cabello A., Severini S., Winter A.: Graph-theoretic approach to quantum correlations. Phys. Rev. Lett. 112(4), 040401 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Christensen E.: Measures on projections and physical states. Commun. Math. Phys. 86(4), 529–538 (1982)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Connes A.: A factor not anti-isomorphic to itself. Ann. Math. 101, 536–554 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Connes A.: Noncommutative Geometry. Academic Press, New York (1995)zbMATHGoogle Scholar
  21. 21.
    Dauns J., Hofmann K.H.: Representation of Rings by Sections Memoirs of the American Mathematical Society. vol. 83. American Mathematical Society, Providence (1968)Google Scholar
  22. 22.
    de Groote, H.F.: Observables IV: the presheaf perspective (2007). arXiv:0708.0677 [math-ph]
  23. 23.
    de Silva, N.: From topology to noncommutative geometry: K-theory (2014). arXiv:1408.1170 [math.OA]
  24. 24.
    de Silva, N.: Contextuality and noncommutative geometry in quantum mechanics. DPhil Thesis, University of Oxford (2015)Google Scholar
  25. 25.
    de Silva, N., Barbosa, R.S.: Partial and total ideals in von Neumann algebras (2014). arXiv:1408.1172 [math.OA]
  26. 26.
    Dixmier J.: Sur certains espaces considérés par M. H. Stone. Summa Brasiliensis Mathematicae 2, 151–182 (1951)zbMATHGoogle Scholar
  27. 27.
    Döring A.: Kochen–Specker theorem for von Neumann algebras. Int. J. Theor. Phys. 44(2), 139–160 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Döring, A.: Flows on generalised Gelfand spectra of nonabelian unital C*-algebras and time evolution of quantum systems (2012). arXiv:1212.4882 [math.OA]
  29. 29.
    Döring, A.: Generalised Gelfand spectra of nonabelian unital C*-algebras (2012). arXiv:1212.2613 [math.OA]
  30. 30.
    Döring A., Harding J.: Abelian subalgebras and the Jordan structure of a von Neumann algebra. Houston J. Math. 42(2), 559–568 (2010)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Döring A., Isham C.J.: A topos foundation for theories of physics: I Formal languages for physics. J. Math. Phys. 49(5), 053515 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Döring A., Isham C.J.: A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory. J. Math. Phys. 49(5), 053516 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Döring A., Isham C.J.: A topos foundation for theories of physics: III Quantum theory and the representation of physical quantities with arrows. J. Math. Phys. 49(5), 053517 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Döring A., Isham C.J.: A topos foundation for theories of physics: IV Categories of systems. J. Math. Phys. 49(5), 053518 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Edwards D.A.: The mathematical foundations of quantum mechanics. Synthese 42(1), 1–70 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Eilenberg S., Steenrod N.E.: Axiomatic approach to homology theory. Proc. Natl. Acad. Sci. USA 31(4), 117–120 (1945)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete. Phys. Rev. 47(10), 777–780 (1935)ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Elliott, G.A.: The classification problem for amenable C*-algebras. In: Chatterji, S.D. (ed.) Proceedings of the International Congress of Mathematicians 1994, pp. 922–932. Birkhäuser, Basel (1995)Google Scholar
  39. 39.
    Fell J.M.G.: The structure of algebras of operator fields. Acta Math. 106(3), 233–280 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Fillmore P.A.: A User’s Guide to Operator Algebras Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 14. Wiley-Interscience, Hoboken (1996)Google Scholar
  41. 41.
    Flori, C., Fritz, T.: (Almost) C*-algebras as sheaves with self-action. J. Noncommut. Geom. (2015). arXiv:1512.01669 [math.OA] (to appear)
  42. 42.
    Folland G.B.: Real Analysis: Modern Techniques and Their Applications. Wiley, Hoboken (1984)zbMATHGoogle Scholar
  43. 43.
    Fujimoto I.: A Gelfand–Naimark theorem for C*-algebras. Pac. J. Math. 184(1), 95–119 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Gel’fand I.M., Naĭmark M.A.: On the imbedding of normed rings into the ring of operators in Hilbert space. Recueil Mathématique [Matematicheskiĭ Sbornik] Nouvelle Série 12(54), 197–213 (1943)MathSciNetGoogle Scholar
  45. 45.
    Giles R., Kummer H.: A non-commutative generalization of topology. Indiana Univ. Math. J. 21(1), 91–102 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Givant S., Halmos P.: Introduction to Boolean Algebras. Undergraduate Texts in Mathematics. Springer, Berlin (2009)zbMATHGoogle Scholar
  47. 47.
    Gleason A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6(6), 885–893 (1957)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Grothendieck A.: Sur les applications linéaires faiblement compactes d’espaces du type C(K). Can. J. Math. 5, 129–173 (1953)zbMATHCrossRefGoogle Scholar
  49. 49.
    Grothendieck, A.: Classes de faisceaux et théorème de Riemann–Roch. Institut des hautes études scientifiques (1968)Google Scholar
  50. 50.
    Hamhalter J.: Quantum Measure Theory Fundamental Theories of Physics, vol. 134. Springer, Berlin (2003)Google Scholar
  51. 51.
    Hamhalter J., Turilova E.: Automorphisms of order structures of abelian parts of operator algebras and their role in quantum theory. Int. J. Theor. Phys. 53(10), 3333–3345 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Hamilton J., Isham C.J., Butterfield J.: A topos perspective on the Kochen–Specker theorem: III Von Neumann algebras as the base category. Int. J. Theor. Phys. 39(6), 1413–1436 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Hartshorne R.: Algebraic Geometry Graduate Texts in Mathematics, vol. 52. Springer, Berlin (1977)Google Scholar
  54. 54.
    Heunen C., Landsman N.P., Spitters B.: A topos for algebraic quantum theory. Commun. Math. Phys. 291(1), 63–110 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Heunen, C., Landsman, N.P., Spitters, B.: Bohrification. In: Halvorson, H. (ed.) Deep Beauty: Under standing the Quantum World Through Mathematical Innovation, pp. 271–314. Cambridge University Press, Cambridge (2011)Google Scholar
  56. 56.
    Heunen C., Landsman N.P., Spitters B.: Bohrification of operator algebras and quantum logic. Synthese 186(3), 719–752 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Heunen C., Landsman N.P., Spitters B., Wolters S.: The Gelfand spectrum of a noncommutative C*-algebra: a topos-theoretic approach. J. Austr. Math. Soc. 90(1), 39–52 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Heunen C., Reyes M.L.: Active lattices determine AW*-algebras. J. Math. Anal. Appl. 416(1), 289–313 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Howard M., Wallman J., Veitch V., Emerson J.: Contextuality supplies the ‘magic’ for quantum computation. Nature 510(7505), 351–355 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    Isham C.J., Butterfield J.: A topos perspective on the Kochen–Specker theorem: I Quantum states as generalized valuations. Int. J. Theor. Phys. 37, 2669–2733 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Isham C.J., Butterfield J.: A topos perspective on the Kochen–Specker theorem: II Conceptual aspects and classical analogues. Int. J. Theor. Phys. 38, 827–859 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Isham C.J., Butterfield J.: A topos perspective on the Kochen–Specker theorem: IV Interval valuations. Int. J. Theor. Phys. 41, 613–639 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Johnstone P.T.: Stone Spaces Studies in Advanced Mathematics, vol. 3. Cambridge Uni versity Press, Cambridge (1982)Google Scholar
  64. 64.
    Kadison R.V.: A representation Theory for Commutative Topological Algebra Memoirs of the Amer ican Mathematical Society, vol. 7. American Mathematical Society, Providence (1951)Google Scholar
  65. 65.
    Kadison R.V., Ringrose, J.R. (1983) Fundamentals of the Theory of Operator Algebras: Volume I. Elementary Theory. Pure and Applied Mathematics, vol. 100I. Academic PressGoogle Scholar
  66. 66.
    Kakutani S.: Concrete representation of abstract (m)-spaces (A characterization of the space of continuous functions). Ann. Math. 42(4), 994–1024 (1941)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Khalkhali, M.: Very basic noncommutative geometry (2004). arXiv:math/0408416 [math.KT]
  68. 68.
    Kochen S., Specker E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17(1), 59–87 (1967)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Kruml D., Pelletier J.W., Resende P., Rosický J., On quantales and spectra of C*-algebras. Appl. Categ. Struct. 11(6), 543–560 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Kruszyński P., Woronowicz S.: A non-commutative Gelfand–Naimark theorem. J. Oper. Theory 8(2), 361–389 (1982)zbMATHGoogle Scholar
  71. 71.
    Lurie, J.: Math 261y: von Neumann Algebras, Lecture Notes, Harvard University (2011). www.math.harvard.edu/~lurie/261y.html
  72. 72.
    Mac Lane S., Moerdijk I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory Universitext. Springer, Berlin (1992)zbMATHGoogle Scholar
  73. 73.
    Maeda S.: Probability measures on projections in vonNeumann algebras.Rev.Math. Phys. 1(2–3), 235–290 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Markov A.: On mean values and exterior densities. Recueil Mathématique [Matematicheskiĭ Sbornik] Nouvelle Série 4(46), 165–191 (1939)Google Scholar
  75. 75.
    Marsden J.E., Ratiu T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems Texts in Applied Mathematics, vol. 17. Springer, Berlin (1999)CrossRefGoogle Scholar
  76. 76.
    Mayet R.: Orthosymmetric ortholattices. Proc. Am. Math. Soc. 114(2), 295–306 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Mulase M.: Category of vector bundles on algebraic curves and infinite dimensional Grassmannians. Int. J. Math. 1(3), 293–342 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Mulvey C.J.: Anon-commutative Gel’fand–Naimark theorem.Math. Proc. Camb. Philos. Soc. 88, 425–428 (1980)zbMATHCrossRefGoogle Scholar
  79. 79.
    Pedersen G.K.: SAW*-algebras and corona C* -algebras, contributions to non-commutative topology. J. Oper. Theory 15(1), 15–32 (1986)zbMATHGoogle Scholar
  80. 80.
    Raussendorf R.: Contextuality in measurement-based quantum computation. Phys. Rev. A 88(2), 022322 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    Redhead M.: Incompleteness, Nonlocality, and Realism: AP rolegomenon to the Philosophy of Quantum Mechanics. Oxford University Press, Oxford (1987)zbMATHGoogle Scholar
  82. 82.
    Resende P.: Étale groupoids and their quantales. Adv. Math. 208(1), 147–209 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Reyes, M.L.: Obstructing extensions of the functor Spec to noncommutative rings (2011). arXiv:1101.2239 [math.RA]
  84. 84.
    Rieffel M.A.: C*-algebras associated with irrational rotations. Pac. J. Math. 93(2), 415–429 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Riesz F.: Sur les opérations fonctionnelles linéaires. eComptes Rendus Hebdomadaires Des sánces de l’Académie Des Sciences 149, 974–977 (1909)zbMATHGoogle Scholar
  86. 86.
    Rørdam M., Larsen F., Laustsen N.: An Introduction to K-Theory for C* -Algebras London Mathematical Society Student Texts, vol. 49. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  87. 87.
    Segal I.E.: Irreducible representations of operator algebras. Bull. Am.Math. Soc. 53(2), 73–88 (1947)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Shulman, M.: nLab: slice 2-category, version 3 (2013). http://ncatlab.org/nlab/revision/slice+2-category/3
  89. 89.
    Shultz F.W.: Pure states as a dual object for C*-algebras. Commun. Math. Phys. 82(4), 497–509 (1982)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Sikorski R.: Boolean Algebras Ergebnisse der Mathematik und Ihrer Grenzgebiete, 2. Folge, vol. 25. Springer, Berlin (1960)Google Scholar
  91. 91.
    Spekkens R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71(5), 052108 (2005)ADSCrossRefGoogle Scholar
  92. 92.
    Stone M.H.: The theory of representations for Boolean algebras. Trans. Am. Math. Soc. 40(1), 37–111 (1936)MathSciNetzbMATHGoogle Scholar
  93. 93.
    Stone M.H.: Applications of the theory of Boolean rings to general topology. Trans. Am. Math. Soc. 41(3), 375–481 (1937)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Swan R.G.: Vector bundles and projective modules. Trans. Am. Math. Soc. 105(2), 264–277 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Takesaki M.: A duality in the representation theory of C*-algebras. Ann. Math. 85(3), 370–382 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Takesaki M.: Theory of Operator Algebras I. Springer, Berlin (1979)zbMATHCrossRefGoogle Scholar
  97. 97.
    Tarski A.: Zur Grundlegung der Boole’schen Algebra I. Fundamenta Mathematicae 24(1), 177–198 (1935)zbMATHCrossRefGoogle Scholar
  98. 98.
    tom Dieck, T.: Algebraic Topology EMS Textbooks in Mathematics, vol. 7. European Mathematical Society, Zurich (2008)CrossRefGoogle Scholar
  99. 99.
    Wegge-Olsen N.E.: K-Theory and C*-Algebras: A Friendly Approach. Oxford University Press, Oxford (1993)zbMATHGoogle Scholar
  100. 100.
    Yeadon F.J.: Measures on projections in W*-algebras of type II 1. Bull. Lond. Math. Soc. 15(2), 139–145 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Yeadon F.J.: Finitely additive measures on projections in finite W*-algebras. Bull. Lond. Math. Soc. 16(2), 145–150 (1984)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity College LondonLondonUK
  2. 2.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations