Communications in Mathematical Physics

, Volume 367, Issue 1, pp 127–150 | Cite as

Asymptotics of Hitchin’s Metric on the Hitchin Section

  • David DumasEmail author
  • Andrew Neitzke


We consider Hitchin’s hyperkähler metric g on the moduli space \({\mathcal{M}}\) of degree zero SL(2)-Higgs bundles over a compact Riemann surface. It has been conjectured that, when one goes to infinity along a generic ray in \({\mathcal{M}}\), g converges to an explicit “semiflat” metric gsf, with an exponential rate of convergence.We show that this is indeed the case for the restriction of g to the tangent bundle of the Hitchin section \({\mathcal{B} \subset \mathcal{M}}\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Rafe Mazzeo, Jan Swoboda, Hartmut Weiss, and Michael Wolf for helpful discussions related to this work, and also thank the anonymous referee for a careful reading and helpful comments and corrections. The authors also gratefully acknowledge support from the U.S. National Science Foundation through individual Grants DMS 1709877 (DD), DMS 1711692 (AN), and through the GEAR Network (DMS 1107452, 1107263, 1107367, “RNMS: GEometric structures And Representation varieties”) which supported a conference where some of this work was conducted.


  1. 1.
    Abramowitz M., Stegun I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1965)zbMATHGoogle Scholar
  2. 2.
    Ahlfors L.V.: Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York (1973)zbMATHGoogle Scholar
  3. 3.
    Dumas D., Wolf M.: Polynomial cubic differentials and convex polygons in the projective plane. Geom.Funct. Anal. 25(6), 1734–1798 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dumas,D.,Wolf,M.:Blaschke: compute polygonal affine spheres corresponding to complex polynomials (2014). Accessed 22 Feb 2018
  5. 5.
    Freed D.S.: Special Kähler manifolds. Commun.Math. Phys. 203, 31–52 (1999) arXiv:hep-th/9712042 ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Gaiotto D., Moore G.W., Neitzke A.: wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010) arXiv:0807.4723 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gaiotto D., Moore G.W., Neitzke A.: Spectral networks. Annales Henri Poincaré 14(7), 1643–1731 (2013) 11. arXiv:1204.4824 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gaiotto D., Moore G.W., Neitzke A.: Wall-crossing,Hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013) arXiv:0907.3987 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59–126 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hitchin N.J.: Stable bundles and integrable systems. Duke Math. J. 54(1), 91–114 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mazzeo, R., Swoboda, J., Weiss, H., Witt, F.: Asymptotic geometry of the Hitchin metric. arXiv:1709.03433v1
  12. 12.
    Minsky Y.N.: Harmonic maps, length, and energy in Teichmüller space. J. Differ. Geom. 35(1), 151–217 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Neitzke A.: Notes on a new construction of hyperkahler metrics. In: Homological Mirror Symmetry and Tropical Geometry, volume 15 of Lect. Notes Unione Mat. Ital., pp. 351–375. Springer, Cham (2014). arXiv:1308.2198
  14. 14.
    Wolf M.: High energy degeneration of harmonic maps between surfaces and rays in Teichmüller space. Topology 30(4), 517–540 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics, and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations