Communications in Mathematical Physics

, Volume 359, Issue 2, pp 449–466 | Cite as

Connes Integration Formula for the Noncommutative Plane

Article
  • 65 Downloads

Abstract

Our aim is to prove the integration formula on the noncommutative (Moyal) plane in terms of singular traces a la Connes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benameur M., Fack T.: Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras. Adv. Math. 199(1), 29–87 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Carey A., Gayral V., Rennie A., Sukochev F.: Integration on locally compact noncommutative spaces. J. Funct. Anal. 263(2), 383–414 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Carey, A., Gayral, V., Rennie, A., Sukochev, F.: Index theory for locally compact noncommutative geometries. Mem. Am. Math. Soc. 231(1085) (2014)Google Scholar
  4. 4.
    Connes A.: Noncommutative Geometry. Academic Press, San Diego (1994)MATHGoogle Scholar
  5. 5.
    Connes A.: The action functional in noncommutative geometry. Commun. Math. Phys. 117(4), 673–683 (1988)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dixmier J.: Existence de traces non normales. (French) . C. R. Acad. Sci. Paris Ser. A B 262, A1107–A1108 (1966)Google Scholar
  7. 7.
    Dykema K., Figiel T., Weiss G., Wodzicki M.: Commutator structure of operator ideals. Adv. Math. 185(1), 1–79 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Estrada R., Gracia-Bondia J., Varilly J.: On summability of distributions and spectral geometry. Commun. Math. Phys. 191(1), 219–248 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gayral V., Gracia-Bondia J., Iochum B., Schücker T., Varilly J.: Moyal planes are spectral triples. Commun. Math. Phys. 246(3), 569–623 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gracia-Bondia J., Varilly J., Figueroa H.: Elements of noncommutative geometry. Basel Textbooks, Birkhauser Boston Inc (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Kadison, R., Ringrose, J.: Fundamentals of the theory of operator algebras. Vol. I. Elementary theory. Reprint of the 1983 original. Graduate Studies in Mathematics, vol. 15. American Mathematical Society, Providence, RI, (1997)Google Scholar
  12. 12.
    Kalton N., Lord S., Potapov D., Sukochev F.: Traces of compact operators and the noncommutative residue. Adv. Math. 235, 1–55 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Levitina, G., Sukochev, F., Zanin, D.: Cwikel estimates revisited. submitted manuscript. arXiv:1703.04254
  14. 14.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. II. Function spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 97. Springer, Berlin-New York, (1979)Google Scholar
  15. 15.
    Lord S., Potapov D., Sukochev F.: Measures from Dixmier traces and zeta functions. J. Funct. Anal. 259(8), 1915–1949 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lord, S., Sukochev, F., Zanin, D.: Singular traces. Theory and applications. De Gruyter Studies in Mathematics, vol. 46, De Gruyter, Berlin, (2013)Google Scholar
  17. 17.
    Pietsch A.: Traces and shift invariant functionals. Math. Nachr. 145, 7–43 (1990)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Pietsch A.: About the Banach envelope of \({l_{1,\infty}}\). Rev. Mat. Comput. 22(1), 209–226 (2009)MathSciNetMATHGoogle Scholar
  19. 19.
    Semenov E., Sukochev F., Usachev A., Zanin D.: Banach limits and traces on \({\mathcal{L}_{1,\infty}}\). Adv. Math. 285, 568–628 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sukochev F., Zanin D.: Fubini theorem in noncommutative geometry. J. Funct. Anal. 272(3), 1230–1264 (2017)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of New South WalesKensingtonAustralia

Personalised recommendations