Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rennet type and microbial transglutaminase in cheese: effect on sensory properties


The aim of this study was to evaluate the combined effect of coagulant type (animal rennet, vegetal rennet, microbial rennet, or recombinant chymosin) and microbial transglutaminase on sensory properties. Results show that cheese coagulated with vegetal rennet exuded the highest amount of whey. Cheeses obtained using transglutaminase were less grainy, more soluble, creamier and showed a greater milk intensity and fresh cheese aroma. The effect of transglutaminase on moisture and persistency was different depending on the type of coagulant used. It can be concluded that microbial transglutaminase is a useful tool to modify sensory characteristics of cheese traditionally coagulated with animal rennet.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Selin A, Demet E, Çağım AÇ et al (2018) Effect of Oryctolagus cuniculus (rabbit) rennet on the texture, rheology, and sensory properties of white cheese. Food Sci Nutr 6:1100–1108. https://doi.org/10.1002/fsn3.649

  2. 2.

    Akbar A, Sadiq MB, Ali I et al (2019) Lactococcus lactis subsp. lactis isolated from fermented milk products and its antimicrobial potential. CyTA J Food 17:214–220. https://doi.org/10.1080/19476337.2019.1575474

  3. 3.

    Kiss A, Naár Z, Daróczi L et al (2019) Changes of free fatty acid composition and number of lactic acid bacteria in three functional goat and sheep milk products fortified with inulin or fish oil. CyTA J Food 17:51–59. https://doi.org/10.1080/19476337.2018.1551936

  4. 4.

    Alves LS, Gomes E, Silva R, Gigante ML (2015) Yield, changes in proteolysis, and sensory quality of Prato cheese produced with different coagulants. J Dairy Sci 96:7490–7499. https://doi.org/10.3168/jds.2013-7119

  5. 5.

    Almeida CM, Simões I (2018) Cardoon-based rennets for cheese production. Appl Microbiol Biotechnol 102:4675–4686. https://doi.org/10.1007/s00253-018-9032-3

  6. 6.

    Uresti RM, López-Arias N, González-Cabriales JJ et al (2003) Use of amidated low methoxyl pectin to produce fish restructured products. Food Hydrocoll 17:171–176. https://doi.org/10.1016/S0268-005X(02)00049-8

  7. 7.

    Tofalo R, Perpetuini G, Battistelli N et al (2019) Accumulation γ-aminobutyric acid and biogenic amines in a traditional raw milk ewe’s cheese. Foods. https://doi.org/10.3390/foods8090401

  8. 8.

    Suzzi G, Sacchetti G, Patrignani F et al (2015) Influence of pig rennet on fatty acid composition, volatile molecule profile, texture and sensory properties of Pecorino di Farindola cheese. J Sci Food Agric 95:2252–2263. https://doi.org/10.1002/jsfa.6944

  9. 9.

    Mazorra-Manzano MA, Perea-Gutiérrez TC, Lugo-Sánchez ME et al (2013) Comparison of the milk-clotting properties of three plant extracts. Food Chem 141:1902–1907. https://doi.org/10.1016/j.foodchem.2013.05.042

  10. 10.

    Fox PF, Guinee TP, Cogan TM, McSweeney PL (2016) Fundamentals of cheese science. Springer, New York

  11. 11.

    Etaio I, Gil PF, Ojeda M et al (2013) Evaluation of sensory quality of calf chops: A new methodological approach. Meat Sci 94:105–114. https://doi.org/10.1016/j.meatsci.2013.01.003

  12. 12.

    Russell BCA, Mcalister GA, Ross ISB, Pethick DWC (2005) Lamb and sheep meat eating quality—industry and scientific issues and the need for integrated research. 465–467

  13. 13.

    Amerine MA, Pangborn RM, Roessler EB (1965) Principles of sensory evaluation of food. od Academic Press, New York.

  14. 14.

    King MC, Hall J, Cliff MA (2001) A comparison of methods for evaluating the performance of a trained sensory panel. J Sens Stud 16:567–581

  15. 15.

    Barcenas P, Pérez Elortondo FJ, Albisu M (2004) Projective mapping in sensory analysis of ewes milk cheeses: a study on consumers and trained panel performance. Food Res Int 37:723–729. https://doi.org/10.1016/j.foodres.2004.02.015

  16. 16.

    Uresti RM, Ramírez JA, López-Arias N, Vázquez M (2003) Negative effect of combining microbial transglutaminase with low methoxyl pectins on the mechanical properties and colour attributes of fish gels. Food Chem 80:551–556. https://doi.org/10.1016/S0308-8146(02)00343-6

  17. 17.

    Yokoyama K, Nio N, Kikuchi Y (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64:447–454. https://doi.org/10.1007/s00253-003-1539-5

  18. 18.

    Jaros D, Partschefeld C, Henle T, Rohm H (2006) Transglutaminase in dairy products: chemistry, physics, applications. J Texture Stud 37:113–155. https://doi.org/10.1111/j.1745-4603.2006.00042.x

  19. 19.

    Ando H, Adachi M, Umeda K et al (1989) Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biol Chem 53:2613–2617. https://doi.org/10.1271/bbb1961.53.2613

  20. 20.

    Escobar D, Arcia P, Curutchet A et al (2014) Influencia de la transglutaminasa en el rendimiento de la producción de queso Dambo uruguayo. Innotec 9:24–30

  21. 21.

    García-Gómez B, Romero-Rodríguez A, Vázquez-Odériz L et al (2019) Skim yoghurt with microbial transglutaminase: evaluation of consumer acceptance. CyTA J Food 17:280–287. https://doi.org/10.1080/19476337.2019.1577304

  22. 22.

    García-Gómez B, Romero-Rodríguez A, Vázquez-Odériz L et al (2019) Sensory evaluation of low-fat yoghurt produced with microbial transglutaminase and comparison with physicochemical evaluation. J Sci Food Agric 99:2088–2095. https://doi.org/10.1002/jsfa.9401

  23. 23.

    Bönisch MP, Huss M, Weitl K, Kulozik U (2007) Transglutaminase cross-linking of milk proteins and impact on yoghurt gel properties. Int Dairy J 17:1360–1371. https://doi.org/10.1016/j.idairyj.2007.01.019

  24. 24.

    Romeih E, Walker G (2017) Recent advances on microbial transglutaminase and dairy application. Trends Food Sci Technol 62:133–140. https://doi.org/10.1016/j.tifs.2017.02.015

  25. 25.

    DeJong GAH, Koppelman SJ (2002) Transglutaminase catalyzed reactions: impact on food applications. J Food Sci 67:2798–2806

  26. 26.

    O’Sullivan MM, Kelly AL, Fox PF (2002) Effect of transglutaminase on the heat stability of milk: a possible mechanism. J Dairy Sci 85:1–7. https://doi.org/10.3168/jds.S0022-0302(02)74045-9

  27. 27.

    Bönisch MP, Heidebach TC, Kulozik U (2008) Influence of transglutaminase protein cross-linking on the rennet coagulation of casein. Food Hydrocoll 22:288–297. https://doi.org/10.1016/j.foodhyd.2006.11.015

  28. 28.

    D’Alessandro AG, Martemucci G, Loizzo P, Faccia M (2019) Production of cheese from donkey milk as influenced by addition of transglutaminase. J Dairy Sci 102:10867–10876. https://doi.org/10.3168/jds.2019-16615

  29. 29.

    Mazuknaite I, Guyot C, Leskauskaite D, Kulozik U (2013) Influence of transglutaminase on the physical and chemical properties of acid milk gel and cottage type cheese. J Food Agric Environ 11:119–124

  30. 30.

    Domagała J, Najgebauer-Lejko D, Wieteska-Śliwa I et al (2016) Influence of milk protein cross-linking by transglutaminase on the rennet coagulation time and the gel properties. J Sci Food Agric 96:3500–3507. https://doi.org/10.1002/jsfa.7534

  31. 31.

    Poulsen NA, Glantz M, Rosengaard AK et al (2017) Comparison of milk protein composition and rennet coagulation properties in native Swedish dairy cow breeds and high-yielding Swedish red cows. J Dairy Sci. https://doi.org/10.3168/jds.2017-12920

  32. 32.

    Özer B, Guyot C, Kulozik U (2012) Simultaneous use of transglutaminase and rennet in milk coagulation: effect of initial milk pH and renneting temperature. Int Dairy J 24:1–7. https://doi.org/10.1016/j.idairyj.2011.10.002

  33. 33.

    Yüksel Z, Avci E, Erdem YK (2011) Modification of the renneting process in Berridge substrate by transglutaminase. Int J Diary Technol 64:365–371. https://doi.org/10.1111/j.1471-0307.2011.00667.x

  34. 34.

    Tejada L, Cayuela JM (2006) Sensorial characteristics during ripening of the the type of coagulant used and the size of the cheese. J Sens Stud 21:333–347

  35. 35.

    García V, Rovira S, Teruel R et al (2012) Effect of vegetable coagulant, microbial coagulant and calf rennet on physicochemical, proteolysis, sensory and texture profiles of fresh goats cheese. Dairy Sci Technol 92:691–707. https://doi.org/10.1007/s13594-012-0086-1

  36. 36.

    Tejada L, Gómez R, Fernández-Salguero J (2007) Sensory characteristics of ewe milk cheese made with three types of coagulant: Calf rennet, powdered vegetable coagulant and crude aqueous extract from Cynara cardunculus. J Food Qual 30:91–103. https://doi.org/10.1111/j.1745-4557.2007.00108.x

  37. 37.

    Prados F, Pino A, Tejada L et al (2008) Influence of different amounts of vegetable coagulant from cardoon Cynara cardunculus and calf rennet on the proteolysis and sensory characteristics of cheeses made with sheep milk. Int Diary J 18:93–98. https://doi.org/10.1016/j.idairyj.2007.06.003

  38. 38.

    Prados F, Pino A (2007) Original article Effect of a powdered vegetable coagulant from cardoon Cynara cardunculus in the accelerated ripening of Manchego cheese. Int J Food Sci Technol 556–561 https://doi.org/10.1111/j.1365-2621.2006.01271.x

  39. 39.

    Galán E, Cabezas L, Fernández-Salguero J (2012) Proteolysis, microbiology and sensory properties of ewes’ milk cheese produced with plant coagulant from cardoon Cynara cardunculus, calf rennet or a mixture thereof. Int Dairy J 25:92–96. https://doi.org/10.1016/j.idairyj.2012.02.001

  40. 40.

    Medina M, Gaya P, Nu M (1992) Characteristics of Burgos and Hisp tnico cheeses manufactured with calf rennet or with recombinant chymosin. Food Chem 45:85–89

  41. 41.

    Lorenzen PC, Neve H, Mautner A, Schlimme E (2002) Effect of enzymatic cross-linking of milk proteins on functional properties of set-style yoghurt. Int J Dairy Technol 55:152–157. https://doi.org/10.1046/j.1471-0307.2002.00065.x

  42. 42.

    Wróblewska B, Kaliszewska A, Kołakowski P et al (2011) Impact of transglutaminase reaction on the immunoreactive and sensory quality of yoghurt starter. World J Microbiol Biotechnol 27:215–227. https://doi.org/10.1007/s11274-010-0446-z

  43. 43.

    Aprodu I, Gurau G, Ionescu A, Banu I (2011) The effect of transglutaminase on the rheological properties of yogurt. Sci Study Res Chem Chem Eng Biotechnol Food Ind 12:185–196

  44. 44.

    Şanli T, Sezgin E, Deveci O et al (2011) Effect of using transglutaminase on physical, chemical and sensory properties of set-type yoghurt. Food Hydrocoll 25:1477–1481. https://doi.org/10.1016/j.foodhyd.2010.09.028

  45. 45.

    Tsevdou MS, Eleftheriou EG, Taoukis PS (2013) Transglutaminase treatment of thermally and high pressure processed milk: Effects on the properties and storage stability of set yoghurt. Innov Food Sci Emerg Technol 17:144–152. https://doi.org/10.1016/j.ifset.2012.11.004

  46. 46.

    Özer B, Avni Kirmaci H, Oztekin S et al (2007) Incorporation of microbial transglutaminase into non-fat yogurt production. Int Dairy J 17:199–207. https://doi.org/10.1016/j.idairyj.2006.02.007

  47. 47.

    Mahmood WA, Sebo NH (2009) Effect of microbial transglutaminase treatment on soft cheese properties. Mesopotamia J Agric 37:19–27

  48. 48.

    Desá EMF, Bordignon-Luiz MT (2010) The effect of transglutaminase on the properties of milk gels and processed cheese. Int J Dairy Technol 63:243–251. https://doi.org/10.1111/j.1471-0307.2010.00568.x

  49. 49.

    García-Gómez B, Vázquez-Odériz L, Muñoz-Ferreiro N et al (2019) Interaction between rennet source and transglutaminase in white fresh cheese production: Effect on physicochemical and textural properties. LWT-Food Sci Technol 113:108279. https://doi.org/10.1016/j.lwt.2019.108279

  50. 50.

    Vázquez M, Guerra-Rodríguez ME (2012) Food additive containing the transglutaminase enzyme obtained by fermentation of culture media formulated with milk, potato and glicerol. Spanish Patent No. ES 2376439.Spanish Patent No. ES 2376439.

  51. 51.

    Portilla-Rivera OM, Téllez-Luis SJ, de León JAR, Vázquez M (2009) Production of microbial transglutaminase on media made from sugar cane molasses and glycerol. Food Technol Biotechnol 47:19–26

  52. 52.

    ISO 8589/Amd1 (2014) Sensory analysis. General guidance for the design of test rooms. International Organization for Standardization. Geneva. Switzerland

  53. 53.

    ISO 8589 (2007) Sensory analysis. General guidance for the design of test rooms. International Organization for Standardization. Geneva. Switzerland

  54. 54.

    Etaio I, Albisu M, Ojeda M et al (2010) Sensory quality control for food certification: a case study on wine. Panel training and qualification, method validation and monitoring. Food Control 21:542–548. https://doi.org/10.1016/j.foodcont.2009.08.011

  55. 55.

    Meilgaard M, Carr B, Civille G (1999) Sensory Evaluation Techniques. Third edit, Taylor y Francis, New York

  56. 56.

    ISO 8586 (2012) Sensory analysis. General guidelines for the selection, training and monitoring of selected assessors and expert sensory assessors. International Organization for Standardization. Geneva. Switzerland

  57. 57.

    UNE 87027:2018 (2018) Sensory analysis. Identification and selection of descriptors for stablishing a sensory profile by a multidimensional approach. Asociación Española de Normalización. Madrid

  58. 58.

    Pereira JA, Dionísio L, Matos TJS, Patarata L (2015) Sensory lexicon development for a portuguese cooked blood sausage–Morcela deArroz deMonchique–to predict its usefulness for a geographical certification. J Sens Stud 30:56–67. https://doi.org/10.1111/joss.12136

  59. 59.

    Sahmer K, Qannari EM (2008) Procedures for the selection of a subset of attributes in sensory profiling. Food Qual Prefer 19:141–145. https://doi.org/10.1016/j.foodqual.2007.03.007

  60. 60.

    R Core Team (2018) R: A language and environment for statistical computing

  61. 61.

    Lê S, Josse J, Husson F (2008) FactoMineR: An R Software, package for multivariate analysis. J Stat 25:1–18 https://doi.org/10.18637/jss.v025.i01

  62. 62.

    Mendiburu F de (2017) Agricolae: statistical procedures for agricultural research. R package version 1.2–8.

  63. 63.

    Bi J, Kuesten C (2012) Intraclass correlation coefficient (ICC): a framework for monitoring and assessing performance of trained sensory panels and panelists. J Sens Stud 27:352–364. https://doi.org/10.1111/j.1745-459X.2012.00399.x

  64. 64.

    ISO 11132 (2012) Sensory analysis. Methodology. Guidelines for monitoring the performance of a quantitative sensory panel (ISO 11132:2012). International Organization for Standardization. Geneva. Switzerland

  65. 65.

    Rosaria R, Vestergaard JS, Kompany-Zareh M, Bredie WL (2011) Monitoring panel performance within and between sensory experiments by multi-way analysis. In: Fichet B, Piccolo D, Verde R, Vichi M (eds) Classification and multivariate analysis for complex data structures. Springer, Berlin, pp 335–342

  66. 66.

    García-Gómez B, Romero-Rodríguez A, Vázquez-Odériz L et al (2019) Sensory quality and consumer acceptance of skim yoghurt produced with transglutaminase at pilot plant scale. Int J Dairy Technol 72:388–394. https://doi.org/10.1111/1471-0307.12595

  67. 67.

    García-Gómez B, Romero-Rodríguez A, Vázquez-Odériz L et al (2018) Physicochemical evaluation of low-fat yoghurt produced with microbial transglutaminase. J Sci Food Agric 98:5479–5485. https://doi.org/10.1002/jsfa.9092

  68. 68.

    Montouto-Graña M, Fernández-Fernández E, Vázquez-Odériz ML, Romero-Rodríguez MA (2002) Development of a sensory profile for the specific denomination “Galician potato”. Food Qual Prefer 13:99–106. https://doi.org/10.1016/S0950-3293(01)00066-0

  69. 69.

    Arias-Carmona MD, Romero-Rodríguez MA, Muñoz-Ferreiro N, Vázquez-Odériz ML (2012) Sensory analysis of protected geographical indication products: an example with turnip greens and tops. J Sens Stud 27:482–489. https://doi.org/10.1111/joss.12013

  70. 70.

    Ordóñez-Santos LE, Arbones-Maciñeira E, Fernández-Perejón J et al (2009) Comparison of physicochemical, microscopic and sensory characteristics of ecologically and conventionally grown crops of two cultivars of tomato (Lycopersicon esculentum mill.). J Sci Food Agric 89:743–749. https://doi.org/10.1002/jsfa.3505

  71. 71.

    Bárcenas P, Elortondo FP, Albisu M (2000) Selection and screening of a descriptive panel for ewes milk cheese sensory profiling. J Sens Stud 15:79–99

  72. 72.

    Oliveira AR, Sykes AV, Hachero-Cruzado I et al (2015) A sensory and nutritional comparison of mussels (Mytilus sp.) produced in NW Iberia and in the Armona offshore production area (Algarve, Portugal). Food Chem 168:520–528. https://doi.org/10.1016/j.foodchem.2014.07.082

  73. 73.

    Carbonell L, Izquierdo L, Costell E (2002) Sensory profiling of cooked gilthead sea bream (Sparus aurata): sensory evaluation procedures and panel training. Food Sci Technol Int 8:169–177. https://doi.org/10.1106/108201302026641

  74. 74.

    Carbonell L, Izquierdo L, Carbonell I (2007) Sensory analysis of Spanish mandarin juices. Selection of attributes and panel performance. Food Qual Prefer 18:329–341. https://doi.org/10.1016/j.foodqual.2006.02.008

  75. 75.

    Ares G, Bruzzone F, Giménez A (2011) Is a consumer panel able to reliably evaluate the texture of dairy desserts using unstructured intensity scales? evaluation of global and individual performance. J Sens Stud 26:363–370. https://doi.org/10.1111/j.1745-459X.2011.00352.x

  76. 76.

    Sipos L, Gere A, Szöllosi D et al (2013) Sensory evaluation and electronic tongue for sensing flavored mineral water taste attributes. J Food Sci 78:S1602–S1608. https://doi.org/10.1111/1750-3841.12178

  77. 77.

    Györey A, Gere A, Kókai Z et al (2012) Effect of sample presentation protocols on the performance of a margarine expert panel. Acta Aliment 41:62–72. https://doi.org/10.1556/AAlim.41.2012.Suppl.6

  78. 78.

    Peltier C, Brockhoff PB, Visalli M, Schlich P (2014) The MAM-CAP table : a new tool for monitoring panel performances. Food Qual Prefer 32:24–27. https://doi.org/10.1016/j.foodqual.2013.07.004

  79. 79.

    Duran A. N, Hoppenreys M, Kermarrec C (2017) Evaluation of the performances of the panel. Avaliable in: https://sensominer.free.fr/studies/duran_hoppenreys_kermarrec_short.doc

  80. 80.

    Lea P, Næs T, Rødbotten M (1997) Analysis of variance for Sensory Data. Editorial John Wiley & Sons Inc, Chichester

  81. 81.

    Lyon BG (1980) Sensory profiling of canned boned chicken: sensory evaluation procedures and data analysis. J Food Sci 45:1341–1346. https://doi.org/10.1111/j.1365-2621.1980.tb06551.x

  82. 82.

    Ritvanen T, Lampolahti S, Lilleberg L et al (2005) Sensory evaluation, chemical composition and consumer acceptance of full fat and reduced fat cheeses in the Finnish market. Food Qual Prefer 16:479–492. https://doi.org/10.1016/j.foodqual.2004.10.001

  83. 83.

    Samson A, Shaojiang C, Zhao J (2004) Formation of bitter peptides during ripening of ovine milk cheese made with different coagulants. Le Lait, INRA Ed 84:567–578. https://doi.org/10.1051/lait

  84. 84.

    Prados F, Pino A (2007) Original article effect of a powdered vegetable coagulant from cardoon Cynara cardunculus in the accelerated ripening of Manchego cheese. Int J Food Sci Technol 42:556–561. https://doi.org/10.1111/j.1365-2621.2006.01271.x

  85. 85.

    Karzan TM, Nawal HS, Ashna TA (2016) The effect of microbial transglutaminase enzyme on some physicochemical and sensory properties of goat’s whey cheese. Int Food Res J 23:688–693

  86. 86.

    Frøst MB, Janhøj T (2007) Understanding creaminess. Int Dairy J 17:1298–1311. https://doi.org/10.1016/j.idairyj.2007.02.007

  87. 87.

    Konuklar G, Inglett GE, Warner K, Carriere CJ (2004) Use of a β-glucan hydrocolloidal suspension in the manufacture of low-fat Cheddar cheeses: textural properties by instrumental methods and sensory panels. Food Hydrocoll 18:535–545. https://doi.org/10.1016/j.foodhyd.2003.08.010

  88. 88.

    Adhikari K, Heymann H, Huff HE (2003) Textural characteristics of lowfat, fullfat and smoked cheeses: sensory and instrumental approaches. Food Qual Prefer 14:211–218. https://doi.org/10.1016/S0950-3293(02)00067-8

Download references


The financial support of Ministerio de Ciencia e Innovación (MICINN) (Spain) for this work (project RTC2014-1835–2) is also acknowledged.

Author information

Correspondence to Manuel Vázquez.

Ethics declarations

Conflict of interest:

The authors declare that there is no conflict of interest.

Compliance with ethics requirements: The research does not include any human subjects and animal experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Gómez, B., Vázquez-Odériz, L., Muñoz-Ferreiro, N. et al. Rennet type and microbial transglutaminase in cheese: effect on sensory properties. Eur Food Res Technol 246, 513–526 (2020). https://doi.org/10.1007/s00217-019-03418-6

Download citation


  • Rennet type
  • Transglutaminase
  • Cheese
  • Sensory profile
  • Trained panel