European Food Research and Technology

, Volume 245, Issue 12, pp 2727–2737 | Cite as

Substances in beer that cause fluorescence: evaluating the qualitative and quantitative determination of these ingredients

  • Eva-Maria KahleEmail author
  • Martin Zarnkow
  • Fritz Jacob
Original Paper


Fluorochromes can impair analysis results or, due to their natural frequency (molecular vibrations) completely superimpose important signals and make measurements impossible. This is especially true for non-invasive, optical measuring methods such as Raman microspectroscopy, which reach their limits when fluorochromes are present. Beer contains many fluorescent substances, e.g., amino acids, vitamins and phenolic compounds. Therefore, in this study, eight different beers (lager beer, dark lager, Pilsner beer, Radler beer, wheat beer, dark wheat beer, alcohol-free lager beer, and alcohol-free wheat beer) were examined for their fluorescent ingredients. Using the PARAFAC model, the fluorescence of the eight beers could be explained for three components. By comparing with existing database literature, these components could be qualitatively assigned to the organic substances DOM (dissolved organic matter), DOC (dissolved organic carbon) or CDOM (colored dissolved organic matter) and OC (organic matter). The emission and extinction spectra helped to establish these organic substances as the three aromatic amino acids phenylalanine, tryptophan and tyrosine, iso-α-acid, phenolic compounds and the vitamin B group. In addition, correlations with the fluorescence intensities from the EEM (excitation–emission matrix) data were detected in combination with beer analyses. A correlation between the fluorescence intensity of origin and iso-α-acid could therefore be shown. The fluorescent amino acids phenylalanine, tryptophan and tyrosine showed only slight correlations with the fluorescent intensity. The calculated data showed that fluorescence spectroscopy with the obtained EEM represents a powerful real-time measurement, which offers sensitive monitoring for the identification of fluorescent substances in beer samples. Qualitative analysis combined with the PARAFAC analysis is also advantageous to identify the main components.


Fluorescence spectroscopy Fluorescing substances EEM Amino acid Vitamins Phenolics Iso-α-acid PARAFAC 



Special thanks go to Dr. Carolin Heim from the Chair of Urban Water Systems Engineering, Garching (TUM), as we were able to carry out our measurements on the fluorescence spectroscope there.

Compliance with ethical standards

Conflict of interest

Eva-Maria Kahle, Martin Zarnkow and Fritz Jacob declare that they have no conflict of interest.

Compliance with ethics requirements

The authors Eva-Maria Kahle, Martin Zarnkow and Fritz Jacob hereby confirm that this manuscript was prepared according to and follows the COPE guidelines and has not already been published nor is it under consideration for publication elsewhere. This article does not contain any studies with human or animal subjects.


  1. 1.
    Steiner E, Gastl M, Becker T (2011) Die Identifizierung von Trübungen in Bier (2). Brauwelt 7:193–205Google Scholar
  2. 2.
    Steiner E, Gastl M, Becker T (2011) Die Identifizierung von Trübungen in Bier (1). Brauwelt 05(06):161–166Google Scholar
  3. 3.
    Steiner E, Arendt EK, Gastl M, Becker T (2011) Influence of the malting parameters on the haze formation of beer after filtration. Eur Food Res Technol 233(4):587–597CrossRefGoogle Scholar
  4. 4.
    Sikorska E, Górecki T, Khmelinskii IV, Sikorski M, de Keukeleire D (2004) Fluorescence spectroscopy for characterization and differentiation of beers. J Inst Brew 110(4):267–275CrossRefGoogle Scholar
  5. 5.
    Christensen J, Nørgaard L, Bro R, Engelsen SB (2006) Multivariate autofluorescence of intact food systems. Chem Rev 106(6):1979–1994CrossRefGoogle Scholar
  6. 6.
    Apperson K, Leiper KA, McKeown IP, Birch D (2002) Beer fluorescence and the isolation, characterisation and silica adsorption of haze-active beer proteins. J Inst Brew 108(2):193–199CrossRefGoogle Scholar
  7. 7.
    Noack D, Lachenmeier D (2019) Nachweis einer Megasphaera-Kontamination bei Schankbier mittels fluoreszenzmarkiertertypes GensondenGoogle Scholar
  8. 8.
    Demčenko AP (2015) Introduction to fluorescence sensing, 2nd edn. Cham, Heidelberg, New York, Dordrecht, LondonCrossRefGoogle Scholar
  9. 9.
    Baschong W, Landmann L (2006) Fluorescence microscopy. In: Baschong W, Landmann L (Hrsg.) Cell biology Chapter 1—Fluorescence microscopyGoogle Scholar
  10. 10.
    Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjev EM (2010) Micro-Raman spectroscopy of algae. Composition analysis and fluorescence background behavior. Biotechnol Bioeng 105(5):889–898PubMedGoogle Scholar
  11. 11.
    Huang Y-S, Karashima T, Yamamoto M, Ogura T, Hamaguchi H (2004) Raman spectroscopic signature of life in a living yeast cell. J Raman Spectrosc 35(7):525–526CrossRefGoogle Scholar
  12. 12.
    Borlinghaus RT (2016) Konfokale Mikroskopie in Weiß. Optische Schnitte in allen Farben, Berlin, HeidelbergCrossRefGoogle Scholar
  13. 13.
    Kubitscheck U (2017) Fluorescence microscopy. From principles to biological applications. WeinheimGoogle Scholar
  14. 14.
    Brand L, Johnson ML (Hrsg.) (2008) Fluorescence spectroscopy. AmsterdamGoogle Scholar
  15. 15.
    Lakowicz JR (2010) Principles of fluorescence spectroscopy, Third edition, corrected at 4. printing. New York, NYGoogle Scholar
  16. 16.
    Wedler G, Freund H-J (2012) Lehrbuch der physikalischen Chemie, 6., vollst. überarb. und aktualisierte Aufl. WeinheimGoogle Scholar
  17. 17.
    Valeur B, Berberan-Santos MN (2012) Molecular fluorescence. Principles and applications, 2. ed. WeinheimGoogle Scholar
  18. 18.
    Gordon R, Cozzolino D, Chandra S, Power A, Roberts J, Chapman J (2017) Analysis of Australian beers using fluorescence spectroscopy. Beverages 3(4):57CrossRefGoogle Scholar
  19. 19.
    Guilbault, G. G.: Practical fluorescence (1999)Google Scholar
  20. 20.
    Ndou TT, Warner IM (1991) Applications of multidimensional absorption and luminescence spectroscopies in analytical chemistry. Chem Rev 91(4):493–507CrossRefGoogle Scholar
  21. 21.
    Christensen J, Ladefoged AM, Nørgaard L (2005) Rapid determination of bitterness in beer using fluorescence spectroscopy and chemometrics. J Inst Brew 111(1):3–10CrossRefGoogle Scholar
  22. 22.
    Friedrich W (1988) Vitamin B12 und verwandte Corrinoide. In: Walter de Gruyter, Berlin, New YorkGoogle Scholar
  23. 23.
    Gorinstein S, Goshev I, Moncheva S, Zemser M, Weisz M, Caspi A, Libman I, Lerner HT, Trakhtenberg S (2000) Intrinsic tryptophan fluorescence of human serum proteins and related conformational changes. J Protein Chem 19(8):637–642CrossRefGoogle Scholar
  24. 24.
    Gorinstein S, Zemser M, Vargas-Albores F, Ochoa J-L, Paredes-Lopez O, Scheler C, Salnikow J, Martin-Belloso O, Trakhtenberg S (1999) Proteins and amino acids in beers, their contents and relationships with other analytical data. Food Chem 67(1):71–78CrossRefGoogle Scholar
  25. 25.
    Sikorska E, Gliszczyńska-Swigło A, Insińska-Rak M, Khmelinskii I, Keukeleire de D, Sikorski M (2008) Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods. Anal Chim Acta 613(2):207–217CrossRefGoogle Scholar
  26. 26.
    Chen J, LeBoeuf EJ, Dai S, Gu B (2003) Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere 50(5):639–647CrossRefGoogle Scholar
  27. 27.
    Viñas P, Balsalobre N, López-Erroz C, Hernández-Córdoba M (2004) Liquid chromatographic analysis of riboflavin vitamins in foods using fluorescence detection. J Agric Food Chem 52(7):1789–1794CrossRefGoogle Scholar
  28. 28.
    Sikorska E, Górecki T, Khmelinskii IV, Sikorski M, de Keukeleire D (2006) Monitoring beer during storage by fluorescence spectroscopy. Food Chem 96(4):632–639CrossRefGoogle Scholar
  29. 29.
    Duyvis MG, Hilhorst R, Laane C, Evans DJ, Schmedding DJM (2002) Role of riboflavin in beer flavor instability. Determination of levels of riboflavin and its origin in beer by fluorometric apoprotein titration. J Agric Food Chem 50(6):1548–1552CrossRefGoogle Scholar
  30. 30.
    Shahidi F, Naczk M (2004) Phenolics in food and nutraceuticals. Fla, Boca RatonGoogle Scholar
  31. 31.
    Sikorska E, Górecki T, Khmelinskii IV, Sikorski M, Kozioł J (2005) Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chem 89(2):217–225CrossRefGoogle Scholar
  32. 32.
    Narziß L, Back W (2012) Die Bierbrauerei. Band 2: Die Technologie der WürzebereitungGoogle Scholar
  33. 33.
    Andrés-Lacueva C, Mattivi F, Tonon D (1998) Determination of riboflavin, flavin mononucleotide and flavin–adenine dinucleotide in wine and other beverages by high-performance liquid chromatography with fluorescence detection. J Chromatogr A 823(1–2):355–363CrossRefGoogle Scholar
  34. 34.
    Lawaetz AJ, Stedmon CA (2009) Fluorescence intensity calibration using the Raman scatter peak of water. Appl Spectrosc 63(8):936–940CrossRefGoogle Scholar
  35. 35.
    MEBAK (Hrsg.) (2012) Würze, Bier, Biermischgetränke (Band 2): Methodensammlung der Mitteleuropäischen Brautechnischen AnalysenkommissionGoogle Scholar
  36. 36.
    Anger H-M (2006) Brautechnische Analysenmethoden. RohstoffeGoogle Scholar
  37. 37.
    Convention EB (1992) Analytica EBC. Method 9.12. 3. J Inst Brew 98:21–22Google Scholar
  38. 38.
    Geddes CD (Hrsg.) (2018) Reviews in fluorescence 2017. ChamGoogle Scholar
  39. 39.
    Harris DC, Werner G, Werner T (Hrsg.) (2014) Lehrbuch der Quantitativen Analyse. BerlinGoogle Scholar
  40. 40.
    Bro R, Kiers HAL (2003) A new efficient method for determining the number of components in PARAFAC models. J Chemom J Chemom Soc 17(5):274–286Google Scholar
  41. 41.
    Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis. A tutorial. Limnol Oceanogr Methods 6(11):572–579CrossRefGoogle Scholar
  42. 42.
    Murphy KR, Stedmon CA, Graeber D, Bro R (2013) Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal Methods 5(23):6557–6566CrossRefGoogle Scholar
  43. 43.
    Andersen CM, Bro R (2003) Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J Chemom J Chemom Soc 17(4):200–215Google Scholar
  44. 44.
    Prasad M, Kumar A, Atta DK, Ramanathan L (2014) Spectrofluorometric analysis of organic matter in the Sundarban mangrove, BangladeshGoogle Scholar
  45. 45.
    Lablicate GmbH 2019: openfluor data base. URL: Abrufdatum 12.06.2019
  46. 46.
    Leenheer JA, Croué J-P (2003) Peer reviewed. Characterizing aquatic dissolved organic matterGoogle Scholar
  47. 47.
    Walmsley TA, Lever M (1982) Fluorometric measurement of furfural and 5-hydroxymethylfurfural. Anal Biochem 124(2):446–451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations