European Food Research and Technology

, Volume 245, Issue 12, pp 2705–2714 | Cite as

Using Torulaspora delbrueckii, Saccharomyces cerevisiae and Saccharomyces bayanus wine yeasts as starter cultures for fermentation and quality improvement of mead

  • Claire Sottil
  • José M. Salor-Torregrosa
  • Jaime Moreno-Garcia
  • Jose Peinado
  • Juan C. Mauricio
  • Juan MorenoEmail author
  • Teresa Garcia-Martinez
Original Paper


Wine yeast strains Torulaspora delbrueckii, Saccharomyces bayanus and an osmo-ethanol tolerant Saccharomyces cerevisiae strain isolated in a Pedro Ximenez grape must have been used as starter cultures for mead production without addition of nitrogen assimilable sources. Significant differences on the fermentation kinetics, major volatile compound (MVC) contents and in organoleptic properties (OP) were obtained. A Multivariate Analysis (MVA) carried out with the contents in the six key compounds, acetaldehyde, 1-propanol, isobutanol, acetoin, 2,3-butanediol (levo) and diethyl succinate, allows to obtain a chemical profile or fingerprint very useful to differentiate each mead. By subjecting these MVC to a principal component analysis, two PCs were obtained that explain the 85.3% of variance and group the meads according the yeast used. Meads obtained with T. delbrueckii have a low ethanol, high residual sugar content and preserve the primary aroma of honey. It was concluded from a sensorial evaluation that the most suitable yeast that produces the sweet type of multifloral honey mead is T. delbrueckii, while S. bayanus is suitable for dry meads.


Mead Fermentation Non-Saccharomyces Saccharomyces Aroma compounds Statistical differentiation 



Multiple sample comparison


Multiple variable analysis


Major volatile compounds


Principal component analysis



The authors thank Minami Ogawa for her assistance with English language editing. This research was funded by the XXIII Programa Propio de Fomento de la Investigación (MOD 4.2. SINERGIAS, Ref. XXIII PP Mod. 4.2 de la Universidad de Córdoba (Spain).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    Pereira AP, Oliveira JM, Mendes-Ferreira A, Estevinho LM, Mendes-Faia A (2017) Mead and other fermented beverages. In: Pandey A, Sanromán M, Du G, Soccol C, Dussap C (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 407–434. 14) CrossRefGoogle Scholar
  2. 2.
    Pereira AP, Mendes-Ferreira A, Oliveira JM, Estevinho LM, Mendes-Faia A (2015) Mead production: effect of nitrogen supplementation on growth, fermentation profile and aroma formation by yeasts in mead fermentation. J Inst Brew 121:122–128CrossRefGoogle Scholar
  3. 3.
    Pereira AP, Dias T, Andrade J, Ramalhosa E, Letícia M, Estevinho LM (2009) Mead production: selection and characterization assays of Saccharomyces cerevisiae strains. Food Chem Toxicol 47:2057–2063CrossRefGoogle Scholar
  4. 4.
    Mendes-Ferreira A, Cosme F, Barbosa C, Falco V, Ines A, Mendes-Faia A (2010) Optimization of honey-wort preparation and alcoholic fermentation by Saccharomyces cerevisiae for mead production. Int J Food Microbiol 144:193–198CrossRefGoogle Scholar
  5. 5.
    Pereira AP, Mendes-Ferreira A, Oliveira JM, Estevinho LM, Mendes-Faia A (2013) High-cell-density fermentation of Saccharomyces cerevisiae for the optimisation of mead production. Food Microbiol 33:114–123CrossRefGoogle Scholar
  6. 6.
    Carrau FM, Medina K, Farina L, Boido E, Henschke PA, Dellacassa E (2008) Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res 8:1196–1207CrossRefGoogle Scholar
  7. 7.
    Bely M, Stoeckle P, Masneuf-Pomarède I, Dubourdieu D (2008) Impact of mixed Torulaspora delbrueckiiSaccharomyces cerevisiae cultures on high-sugar fermentation. Int J Food Microbiol 122:312–320CrossRefGoogle Scholar
  8. 8.
    Belda I, Navascués E, Marquina D, Santos A, Calderon F, Benito S (2015) Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine. Appl Microbiol Biotechnol 99:1911–1922CrossRefGoogle Scholar
  9. 9.
    Velázquez R, Zamora E, Álvarez ML, Hernández LM, Ramírez M (2015) Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine. Front Microbiol. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Benito S (2018) The impact of Torulaspora delbrueckii yeast in winemaking. Appl Microbiol Biotechnol 102:3081–3094. CrossRefPubMedGoogle Scholar
  11. 11.
    Barry JP, Metz MS, Hughey J, Quirk A, Bochman ML (2018) Two novel strains of Torulaspora delbrueckii isolated from the honey bee microbiome and their use in honey fermentation. Fermentation 4:1–11. CrossRefGoogle Scholar
  12. 12.
    Ruirui L, Yuxia SY (2019) Effects of honey variety and non-Saccharomyces cerevisiae on the flavor volatiles of mead. J Am Soc Brew Chem 77:40–53. CrossRefGoogle Scholar
  13. 13.
    Ramalhosa E, Gomes T, Pereira AP, Dias T, Andrade J, Letícia M, Estevinho LM (2011) Mead production: tradition versus modernity. In: Jackson RS (ed) Advances in food and nutrition research, vol 63. Academic Press (Elsevier), Burlington, pp 101–118 (ISBN 978-0-12-384927-4) Google Scholar
  14. 14.
    CEE (1990) Diario Oficial de las Comunidades Europeas. Diario L-272. Ed Mundi-Prensa, Springer, MadridGoogle Scholar
  15. 15.
    Shively CE, Henick-Kling T (2001) Comparison of two procedures for assay of free amino nitrogen. Am J Enol Vitic 52:400–401Google Scholar
  16. 16.
    Filipe-Ribeiro L, Mendes-Faia A (2007) Validation and comparison of analytical methods used to evaluate the nitrogen status of grape juice. Food Chem 100:1272–1277CrossRefGoogle Scholar
  17. 17.
    Peinado RA, Moreno JA, Muñoz D, Medina M, Moreno J (2004) Gas chromatographic quantification of major volatile compounds and polyols in wine by direct injection. J Agric Food Chem 52:6389–6393CrossRefGoogle Scholar
  18. 18.
    Vararu F, Moreno-García J, Zamfir C, Cotea VV, Moreno J (2016) Selection of aroma compounds for the differentiation of wines obtained by fermenting musts with starter cultures of commercial yeast strains. Food Chem 15:373–381. CrossRefGoogle Scholar
  19. 19.
    UNE 87-020-93 (1997) Análisis sensorial. AENOR, MadridGoogle Scholar
  20. 20.
    Cabrera J, Moreno J, Ortega JM, Medina M (1988) Formation of ethanol, higher alcohols, esters, and terpenes by five yeast strains in musts from Pedro Ximénez grapes in various degrees of ripeness. Am J Enol Vitic 39(4):283–287Google Scholar
  21. 21.
    Moreno J, Millán C, Ortega JM, Medina M (1991) Analytical differentiation of wine fermentations using pure and mixed yeast cultures. J Ind Microbiol 7:181–189. CrossRefGoogle Scholar
  22. 22.
    García-Martínez T, Bellincontro A, López de Lerma MN, Peinado RA, Mauricio JC, Mencarelli F, Moreno J (2011) Discrimination of sweet wines partially fermented by two osmo-ethanol-tolerant yeasts by gas chromatographic analysis and electronic nose. Food Chem. 127:1391–1396. CrossRefPubMedGoogle Scholar
  23. 23.
    Roldán A, van Muiswinkel GCJ, Lasanta C, Palacios V, Caro I (2011) Influence of pollen addition on mead elaboration: physicochemical and sensory characteristics. Food Chem 126:574–582CrossRefGoogle Scholar
  24. 24.
    Rodrigues de Sousa H, Spencer-Martins I, Gonçalves P (2004) Differential regulation by glucose and fructose of a gene encoding a specific fructose/H+ symporter in Saccharomyces sensu stricto yeasts. Yeast. 21:519–530CrossRefGoogle Scholar
  25. 25.
    Moreno J, Peinado RA (2012) Enological chemistry. Academic Press (Elsevier), San Diego (ISBN 9780123884381) Google Scholar
  26. 26.
    Pérez RA, Iglesias MT, Pueyo E, Gonzalez M, de Lorenzo C (2007) Amino acid composition and antioxidant capacity of Spanish honeys. J Agric Food Chem 24:360–365CrossRefGoogle Scholar
  27. 27.
    Sroka P, Tuszynski T (2007) Changes in organic acid contents during mead wort fermentation. Food Chem 104:1250–1257CrossRefGoogle Scholar
  28. 28.
    Ugliano M, TravisI B, Francis L, Henschke PA (2010) Volatile composition and sensory properties of Shiraz wines as affected by nitrogen supplementation and yeast species: rationalizing nitrogen modulation of wine aroma. J Agric Food Chem 58(23):12417–12425. CrossRefPubMedGoogle Scholar
  29. 29.
    Swiegers J, Bartowsky E, Henschke P, Pretorius I (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res 11:139–173. CrossRefGoogle Scholar
  30. 30.
    Etschmann M, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59(1):1–8. CrossRefPubMedGoogle Scholar
  31. 31.
    Sabon I, de Revel G, Kotseridis Y, Bertrand A (2002) Determination of volatile compounds in grenache wines in relation with different terroirs in the Rhone Valley. J Agric Food Chem 50:6341–6345CrossRefGoogle Scholar
  32. 32.
    Bartowsky EJ, Pretorius IS (2009) Microbial formation and modification of flavor and off-flavor compounds in wine. In: König H, Unden G, Fröhlich J (eds) Biology of microorganisms on grapes, in must and in wine. Springer, BerlinGoogle Scholar
  33. 33.
    Šmogrovičová D, Nádasky P, Tandlich R, Wilhelmi BS, Cambray G (2012) Analytical and aroma profiles of Slovak and South African meads. Czech J Food Sci 30(3):241–246. CrossRefGoogle Scholar
  34. 34.
    Sumby KM, Grbin PR, Jiranek V (2010) Microbial modulation of aromatic esters in wine: current knowledge and future prospects. Food Chem 121:1–16. CrossRefGoogle Scholar
  35. 35.
    Dourtoglou V, Antonopoulos A, Dourtoglou T, Lalas S (2014) Discrimination of varietal wines according to their volatiles. Food Chem 159:181–187. CrossRefPubMedGoogle Scholar
  36. 36.
    Bénes I, Furdíková K, Šmogrovičová D (2015) Influence of Saccharomyces cerevisiae strain on the profile of volatile organic compounds of blossom honey mead. Czech J Food Sci 33(4):334–339. CrossRefGoogle Scholar
  37. 37.
    Vilanova M, Oliveira JM (2012) Application of gas chromatography on the evaluation of grape and wine aroma in Atlantic viticulture (NW Iberian Peninsula). In: Salih B (ed) Gas chromatography in plant science, wine technology, toxicology and some specific applications. pp 109–146. Accessed May 2019 (Chapter 7, ISBN 978-953-51-0127-7)
  38. 38.
    Iglesias A, Pascoal A, Choupina AB, Carvalho CA, Feás C, Estevinho LM (2014) Developments in the fermentation process and quality improvement strategies for mead production. Molecules 19(8):12577–12590. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Official Website of the Wine Aroma Wheel. Accessed Mar 2019

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CEMOIPerpignanFrance
  2. 2.Department of Agricultural Chemistry, Agrifood Campus of International Excellence (ceiA3)University of CórdobaCórdobaSpain
  3. 3.Department of Microbiology, Agrifood Campus of International Excellence (ceiA3)University of CórdobaCórdobaSpain
  4. 4.Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3)University of CórdobaCórdobaSpain

Personalised recommendations