European Food Research and Technology

, Volume 245, Issue 12, pp 2613–2620 | Cite as

Insects as an alternative source of protein: a review of the potential use of grasshopper (Sphenarium purpurascens Ch.) as a food ingredient

  • Jesús Rodríguez-Miranda
  • Juan Pablo Alcántar-Vázquez
  • Tania Zúñiga-Marroquín
  • José Manuel Juárez-BarrientosEmail author
Review Article


The intake of insects by humans is not a new practice, but in some cultures, is still an insalubrious activity or even a taboo. Over time, eating some insect’s species to obtain proteins seems to be a feasible idea to an economic, environmental and nutritional point of view. Among more than 2000 species of edible insects, the Sphenarium purpurascens stands out, due to its nutritional properties. A review of the intake of insects as a source of proteins was made, to integrate the information of S. purpurascens analyzing nutritional aspects to establish its potential to the food industry. The data found reveal that S. purpurascens has higher protein content than some conventional sources of animal origin, with an important contribution of fats, carbohydrates, minerals and their amino acid profile, it complies with the FAO requirements. All these characteristics offer a potential for processed foods development with high protein content and not only to encourage the consumption of the classic fried and spiced insect as it is currently consumed. However, studies that register officially the total production for their possible mass production and potential industrial uses are needed.


Entomophagy Grasshopper Protein source S. purpurascens Food ingredients 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This review does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Aiking H (2011) Future protein supply. Trends Food Sci Technol 22(2–3):112–120. CrossRefGoogle Scholar
  2. 2.
    Akhtar Y, Isman MB (2017) Insects as an alternative protein source. In: Yada RY (ed) Proteins in food processing. Woodhead Publishing, Sawston, pp 263–287Google Scholar
  3. 3.
    Arenas de Moreno L, Vidal A, Huerta-Sánchez D, Navas Y, Uzcátegui-Bracho S, Huerta-Leidenz N (2000) Análisis comparativo proximal y de minerales entre carnes de iguana, pollo y res. Arch Latinoam Nutr 50(4):409–415Google Scholar
  4. 4.
    Ayadi FY, Rosentrater KA, Muthukumarappan K (2012) Alternative protein sources for aquaculture feeds. J Aquacul Feed Sci Nut 4(1):1–26CrossRefGoogle Scholar
  5. 5.
    Bandara T (2018) Alternative feed ingredients in aquaculture: Opportunities and challenges. J Entomol Zool Stud 6(2):3087–3094Google Scholar
  6. 6.
    Barroso FG, de Haro C, Sánchez-Muros MJ, Venegas E, Martínez-Sánchez A, Pérez-Bañón C (2014) The potential of various insect species for use as food for fish. Aquaculture 422:193–201. CrossRefGoogle Scholar
  7. 7.
    Barrows R, Wolters W, Richie M (2010) Finding alternative fish feeds for aquaculture. Agric Res 58(9):8–11Google Scholar
  8. 8.
    Belforti M, Gai F, Lussiana C, Renna M, Malfatto V, Rotolo L, De Marco M, Dabbou S, Schiavone A, Zoccarato I, Gasco L (2015) Tenebrio Molitor meal in rainbow trout (Oncorhynchus Mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital J Anim Sci 14(4):4170. CrossRefGoogle Scholar
  9. 9.
    Belghit I, Liland NS, Waagbø R, Biancarosa I, Pelusio N, Li Y, Krogdahl Å, Lock EJ (2018) Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture 491(1):72–81. CrossRefGoogle Scholar
  10. 10.
    Bohrer BM (2017) Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci Technol 65:103–112. CrossRefGoogle Scholar
  11. 11.
    Bußler S, Rumpold BA, Jander E, Rawel HM, Schlüter OK (2016) Recovery and techno functionality of flours and proteins from two edible insect species: meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2(12):e00218. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Castellanos-Vargas I, Cano-Santana Z (2009) Historia natural y ecología de Sphenarium purpurascens (Orthoptera: Pyrgomorphidae). In: Lot A, Cano-Santana Z (eds) Biodiversidad del Ecosistema del Pedregal de San Ángel. Universidad Nacional Autónoma de México, México, pp 337–346Google Scholar
  13. 13.
    Cerritos R, Cano-Santana Z (2008) Harvesting grasshoppers Sphenarium purpurascens in Mexico for human consumption: a comparison with insecticidal control for managing pest outbreaks. Crop Prot 27(3–5):473–480. CrossRefGoogle Scholar
  14. 14.
    Cerritos R, Ponce-Reyes R, Rojas-García F (2014) Exploiting a pest insect species Sphenarium purpurascens for human consumption: ecological, social, and economic repercussions. J Insects Food Feed 1(1):75–84. CrossRefGoogle Scholar
  15. 15.
    Chaves RC, Queiroga-de Paula R, Gücker B, Evódio-Marriel E, Oliveira Teixeira A, Gonçalves-Boëchat I (2015) An alternative fish feed based on earthworm and fruit meals for tilapia and carp postlarvae. Rev Bras Biociênc 13(1):15–24Google Scholar
  16. 16.
    Costa-Neto EM, Dunkel FV (2016) Insects as food: history, culture, and modern use around the world. In: Dossey AT, Morales-Ramos JA, Rojas MG (eds) Insects as sustainable food ingredients. Academic Press, Cambridge, pp 29–60. CrossRefGoogle Scholar
  17. 17.
    Cuj-Laines R, Hernández-Santos B, Reyes-Jaquez D, Delgado-Licon E, Juárez-Barrientos JM, Rodríguez-Miranda J (2018) Physicochemical properties of ready-to-eat extruded nixtamalized maize-based snacks enriched with grasshopper. Int J Food Sci Technol 53(8):1889–1895. CrossRefGoogle Scholar
  18. 18.
    FAO (2014) The state of world fisheries and aquaculture: opportunities and challenges. Food and Agricultural Organization of the United Nations, RomeGoogle Scholar
  19. 19.
    Food and Agriculture Organization of the United Nations/World Health Organization (1989) Protein Quality Evaluation. FAO Expert Consultation, ItalyGoogle Scholar
  20. 20.
    Food and Agriculture Organization of the United Nations (2011) Dietary protein quality evaluation in human nutrition. In: Food and Nutrition Paper 92. New Zealand: FAO Expert ConsultationGoogle Scholar
  21. 21.
    Gahukar RT (2016) Edible insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. In: Dossey AT, Morales-Ramos JA, Rojas MG (eds) Insects as sustainable food ingredients. Academic Press, Cambridge, pp 85–111. CrossRefGoogle Scholar
  22. 22.
    Gasco L, Gai F, Maricchiolo G, Genovese L, Ragonese S, Bottari T, Caruso G (2018) Chemistry of foods: feeds for the aquaculture sector: current situation and alternative sources. In: Parisi S (ed) Chemistry of foods. Springer, Basel, pp 1–103. CrossRefGoogle Scholar
  23. 23.
    Henning J, Jain M (2017) Innovation in Fish Feeds. Fish 2.0, Investment InsightsGoogle Scholar
  24. 24.
    Henry M, Gasco L, Piccolo G, Fountoulaki E (2015) Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Tech 203:1–22. CrossRefGoogle Scholar
  25. 25.
    Henry MA, Gasco L, Chatzifotis S, Piccolo G (2018) Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev Comp Immunol 81:204–209. CrossRefPubMedGoogle Scholar
  26. 26.
    Izquierdo CP, Torres FG, Barboza MY, Márquez SE, Allara CM (2000) Análisis proximal, perfil de ácidos grasos, aminoácidos esenciales y contenido de minerales en doce especies de pescado de importancia comercial en Venezuela. Arch Latinoam Nut 50(2):187–194Google Scholar
  27. 27.
    Lock ER, Arsiwalla T, Waagbø R (2015) Insect larvae meal as an alternative source of nutrients in the diet of Atlantic Salmon (Salmo salar) postsmolt. Aquac Nutr 22(6):1–12. CrossRefGoogle Scholar
  28. 28.
    Magalhães R, Sánchez-López A, Leal RS, Martínez-Llorens S, Oliva-Teles A, Peres H (2017) Black Soldier Fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 476(1):79–85. CrossRefGoogle Scholar
  29. 29.
    Makkar HPS, Tranb G, Heuzé V, Ankers P (2014) State-of-the-art on use of insects as animal feed. Anim Feed Sci Tech 197:1–33. CrossRefGoogle Scholar
  30. 30.
    Manzano-Agugliaro F, Sanchez-Muros MJ, Barroso FG, Martínez-Sánchez A, Rojo S, Pérez-Bañón C (2012) Insects for biodiesel production. Renew Sust Energ Rev 16(6):3744–3753. CrossRefGoogle Scholar
  31. 31.
    Melo V, Garcia M, Sandoval H, Jiménez HD, Calvo C (2011) Quality proteins from edible indigenous insect food of Latin America and Asia. Emir J Food Agric 23(3):283–289Google Scholar
  32. 32.
    Melo-Ruiz V, Sandoval-Trujillo H, Quirino-Barreda T, Sánchez-Herrera K, Díaz-García R, Calvo-Carrillo C (2015) Chemical composition and amino acids content of five species of edible Grasshoppers from Mexico. Emir J Food Agric 27(8):654–658. CrossRefGoogle Scholar
  33. 33.
    Meyer-Rochow VB, Chakravorty J (2013) Notes on entomophagy and entomotherapy generally and information on the situation in India in particular. Appl Entomol Zool 48(2):105–112CrossRefGoogle Scholar
  34. 34.
    Nongonierma AB, FitzGerald RJ (2017) Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: a review. Innov Food Sci Emerg Technol 43:239–252. CrossRefGoogle Scholar
  35. 35.
    Paul A, Frederich M, Uyttenbroeck R, Hatt S, Malik P, Lebecque S, Hamaidia M, Miazek K, Goffin D, Willems L, Deleu M, Fauconnier ML, Richel A, De Pauw E, Blecker C, Monty A, Francis F, Haubruge É, Danthine S (2016) Grasshoppers as a food source? a review. Biotechnol Agron Soc Environ 20(S1):337–352Google Scholar
  36. 36.
    Payne CL, Scarborough P, Rayner M, Nonaka K (2016) A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci Technol 47:69–77. CrossRefGoogle Scholar
  37. 37.
    Pedraza-Lara C, Barrientos-Lozano L, Rocha-Sánchez AY, Zaldívar-Riverón A (2015) Montane and coastal species diversification in the economically important Mexican grasshopper genus Sphenarium (Orthoptera: Pyrgomorphidae). Mol Phylogenet Evol 84:220–231. CrossRefPubMedGoogle Scholar
  38. 38.
    Premalatha M, Abbasi T, Abbasi T, Abbasi SA (2011) Energy-efficient food production to reduce global warming and ecodegradation: the use of edible insects. Renew Sust Energ Rev 15(9):4357–4360. CrossRefGoogle Scholar
  39. 39.
    Ramos-Elorduy J (1997) Insects: a sustainable source of food? Ecol food nutr 36(2–4):247–276. CrossRefGoogle Scholar
  40. 40.
    Ramos-Elorduy J (2006) Threatened edible insects in Hidalgo, Mexico and some measures to preserve them. J Ethnobiol Ethnomed 2(51):1–10. CrossRefGoogle Scholar
  41. 41.
    Ramos-Elorduy J, Moreno JMP, Prado EE, Perez MA, Otero JL, De Guevara OL (1997) Nutritional value of edible insects from the state of Oaxaca, Mexico. J Food Compos Anal 10(2):142–157. CrossRefGoogle Scholar
  42. 42.
    Rumpold BA, Schlüter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57(5):802–823. CrossRefPubMedGoogle Scholar
  43. 43.
    Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F (2014) Insect meal as renewable source of food for animal feeding: a review. J Clean Prod 65:16–27. CrossRefGoogle Scholar
  44. 44.
    Severini C, Azzollini D, Albenzio M, Derossi A (2018) On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Res Int 106:666–676. CrossRefPubMedGoogle Scholar
  45. 45.
    Shelomi M (2015) Why we still don’t eat insects: assessing entomophagy promotion through a diffusion of innovations framework. Trends Food Sci Technol 45(2):311–318. CrossRefGoogle Scholar
  46. 46.
    Shockley M, Dossey AT (2014) Insects for human consumption. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic Press, Cambridge, pp 617–652CrossRefGoogle Scholar
  47. 47.
    Smárason BÖ, Alriksson B, Jóhannsson R (2018) Safe and sustainable protein sources from the forest industry—the case of fish feed. Trends Food Sci Technol 84:12–14. CrossRefGoogle Scholar
  48. 48.
    Sogari G (2015) Entomophagy and Italian consumers: an exploratory analysis. Prog Nutr 17(4):311–316Google Scholar
  49. 49.
    Stamer A (2015) Insect proteins—a new source for animal feed. Sci Soc 16(6):676c680. CrossRefGoogle Scholar
  50. 50.
    Tomberlin JK, Van Huis A, Benbow ME, Jordan H, Astuti DA, Azzollini D, Banks I, Bava V, Borgemeister C, Cammack JA, Chapkin RS, Čičková H, Crippen TL, Day A, Dicke M, Drew DJW, Emhart C, Epstein M, Finke M, Fischer CH, Gatlin D, Grabowski NT, He C, Heckman L, Hubert A, Jacobs J, Josephs J, Khanal SK, Kleinfinger JF, Klein G, Leach C, Liu Y, Newton GL, Olivier R, Pechal JL, Picard CJ, Rojo S, Roncarati A, Sheppard C, Tarone AM, Verstappen B, Vickerson A, Yang H, Yen AL, Yu Z, Zhang J, Zheng L (2015) Protecting the environment through insect farming as a means to produce protein for use as livestock, poultry, and aquaculture feed. J Insects Food Feed 1(4):307–309. CrossRefGoogle Scholar
  51. 51.
    Torruco-Uco JG, Hernández-Santos B, Herman-Lara E, Martínez-Sánchez CE, Juárez-Barrientos JM, Rodríguez-Miranda J (2018) Chemical, functional and thermal characterization, and fatty acid profile of the edible grasshopper (Sphenarium purpurascens Ch.). Eur Food Res Technol 245(2):285–292. CrossRefGoogle Scholar
  52. 52.
    Tran G, Heuzé V, Makkar HPS (2015) Insects in fish diets. Animal. Frontiers 5(2):37–44. CrossRefGoogle Scholar
  53. 53.
    Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects: future prospects for food and feed security (No. 171). Food and Agriculture Organization of the United NationsGoogle Scholar
  54. 54.
    Wolfe RR, Baum JI, Starck C, Moughan PJ (2018) Factors contributing to the selection of dietary protein food sources. Clin Nutr 37(1):130–138. CrossRefPubMedGoogle Scholar
  55. 55.
    Zielińska E, Karaś M, Baraniak B (2018) Comparison of functional properties of edible insects and protein preparations thereof. LWT Food Sci Technol 91:168–174. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tecnológico Nacional de México/Instituto Tecnológico de TuxtepecTuxtepecMexico
  2. 2.Universidad del Papaloapan Campus Loma Bonita/DES Ciencias AgropecuariasLoma BonitaMexico

Personalised recommendations