Advertisement

European Food Research and Technology

, Volume 245, Issue 12, pp 2621–2630 | Cite as

Spray-dried Ancellotta red wine: natural colorant with potential for food applications

  • Izmari Jasel Alvarez GaonaEmail author
  • Martín Fanzone
  • Santiago Sari
  • Mariela Assof
  • Dolores Pérez
  • Jorge Chirife
  • María Clara Zamora
Review Article
  • 64 Downloads

Abstract

Ancellotta red wine (Vitis vinifera L.) was encapsulated by spray-drying (inlet and outlet temperatures were 145 °C and 70 °C, respectively) to obtain a wine powder with a low water activity (aw) using maltodextrin DE10 as an encapsulating agent. The retention of total monomeric anthocyanins (TMA) in the wine powder was found to be greater than 80%. Anthocyanin profiles of Ancellotta liquid wine and wine powder were characterized by using HPLC–DAD and 33 compounds were identified. The wine powder was stored under two different water activity values (aw 0.25 and aw 0.33). Furthermore, the TMA (pH-differential method), total anthocyanins and malvidin-3-glucoside were determined by HPLC–DAD for up to 90 days’ storage at 38 °C. Total anthocyanins and malvidin-3-glucoside decreased very slowly during storage. The stability of anthocyanins and color differences (ΔE*ab) in 1% wine powder solution at different pHs and temperatures were evaluated. These results indicated that Ancellotta wine powder has the potential to be used as a food colorant in low pH and low water activity foods.

Keywords

Ancellotta Red wine Spray-drying Food colorant Anthocyanins 

Notes

Acknowledgements

Authors acknowledge financial support from Facultad de Ingeniería y Ciencias Agrarias, Pontificia Universidad Católica Argentina.

Compliance ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Griffiths J (2005) Coloring foods & beverages. Food Technol 59(5):38–44Google Scholar
  2. 2.
    McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteous L, Prince E (2007) Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 370(9598):1560–1567CrossRefGoogle Scholar
  3. 3.
    He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci T 1:163–187CrossRefGoogle Scholar
  4. 4.
    Heinonen J, Farahmandazad H, Vuorinen A, Kallio H, Yang B, Sainio T (2016) Extraction and purification of anthocyanins from purple-fleshed potato. Food Bioprod Process 99:136–146CrossRefGoogle Scholar
  5. 5.
    Wang W, Jung J, Tomasino E, Zhao Y (2016) Optimization of solvent and ultrasound-assisted extraction for different anthocyanin rich fruit and their effects on anthocyanin compositions. LWT-Food Sci Technol 72:229–238CrossRefGoogle Scholar
  6. 6.
    Ghosh D, Konishi T (2007) Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 16(2):200–208PubMedGoogle Scholar
  7. 7.
    Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269(2):281–290CrossRefGoogle Scholar
  8. 8.
    Chandrasekhar J, Madhusudhan MC, Raghavarao KSMS (2012) Extraction of anthocyanins from red cabbage and purification using adsorption. Food Bioprod Process 90(4):615–623CrossRefGoogle Scholar
  9. 9.
    Valls J, Millán S, Martí MP, Borràs E, Arola L (2009) Advanced separation methods of food anthocyanins, isoflavones and flavanols. J Chromatogr A 1216(43):7143–7172CrossRefGoogle Scholar
  10. 10.
    Patil G, Madhusudhan MC, Babu BR, Raghavarao KSMS (2009) Extraction, dealcoholization and concentration of anthocyanin from red radish. Chem Eng Process 48(1):364–369CrossRefGoogle Scholar
  11. 11.
    Stintzing FC, Carle R (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci Tech 15(1):19–38CrossRefGoogle Scholar
  12. 12.
    Monagas M, Bartolomé B (2009) Anthocyanins and anthocyanin-derived compounds. In: Moreno-Arribas MV, Polo MC (eds) Wine chemistry and biochemistry. Springer, New YorkGoogle Scholar
  13. 13.
    Informe de la variedad Ancellotta (2018) Departamento de Estadística y Estudios de Mercado. Subgerencia de Estadística y Asuntos Técnicos Internacionales, Instituto Nacional de Vitivinicultura (INV)Google Scholar
  14. 14.
    Masters K (1991) Spray drying handbook. Longman Scientific & Technical, New YorkGoogle Scholar
  15. 15.
    Tonon RV, Brabet C, Hubinger MD (2010) Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Res Int 43(3):907–914CrossRefGoogle Scholar
  16. 16.
    Mahdavi SA, Jafari SM, Ghorbani M, Assadpoor E (2014) Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Dry Technol 32(5):509–518CrossRefGoogle Scholar
  17. 17.
    Alvarez Gaona IJ, Bater C, Zamora MC, Chirife J (2017) Spray drying encapsulation of red wine: stability of total monomeric anthocyanins and structural alterations upon storage. J Food Process Pres 42(2):e13457CrossRefGoogle Scholar
  18. 18.
    Labuza TP (1982) Shelf-life dating of foods. Food Nutr Press Inc, ConnecticutGoogle Scholar
  19. 19.
    Favetto G, Resnik S, Chirife J, Fontan CF (1983) Statistical evaluation of water activity measurements obtained with the Vaisala Humicap humidity meter. J Food Sci 48(2):534–538CrossRefGoogle Scholar
  20. 20.
    AOAC (1995) Official methods of analysis. Arlington, USAGoogle Scholar
  21. 21.
    Camussoni G, Carnevali E (2004) Determinación comparativa del contenido de polifenoles en vinos tintos de origen. Invenio 7(13):151–160Google Scholar
  22. 22.
    Cioroi M, Musat CL (2007) Investigations on the correlations between polyphenol content from red wines and their antioxidant capacity. Cercetari Agronomice in Moldova 4:35–42Google Scholar
  23. 23.
    Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curre Protoc Food Anal Chem 00:F1.2.1–F1.2.13CrossRefGoogle Scholar
  24. 24.
    Iglesias HA, Chirife J (1976) Equilibrium moisture contents of air dried beef. Dependence on drying temperature. Int J Food Sci Tech 11(6):565–573CrossRefGoogle Scholar
  25. 25.
    Blanco-Vega D, López-Bellido FJ, Alía-Robledo JM, Hermosín-Gutiérrez I (2011) HPLC–DAD–ESI-MS/MS characterization of pyranoanthocyanins pigments formed in model wine. J Agric Food Chem 59(17):9523–9531CrossRefGoogle Scholar
  26. 26.
    Fanzone M, Peña-Neira A, Gil M, Jofré V, Assof M, Zamora F (2012) Impact of phenolic and polysaccharidic composition on commercial value of Argentinean Malbec and Cabernet Sauvignon wines. Food Res Int 45(1):402–414CrossRefGoogle Scholar
  27. 27.
    Saénz C, Tapia S, Chávez J, Robert P (2009) Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chem 114(2):616–622CrossRefGoogle Scholar
  28. 28.
    Tonon RV (2009) Secagem por atomização do suco de açaí: influência das variáveis de processo, qualidade e estabilidade do produto. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, pp 28–29Google Scholar
  29. 29.
    Malinovski LI, Brighenti AF, Borghezan M, Guerra MP, Silva AL, Porro D, Vieira HJ (2016) August). Viticultural performance of Italian grapevines in high altitude regions of Santa Catarina State, Brazil. Acta Hortic 1115:203–210CrossRefGoogle Scholar
  30. 30.
    Ragone R, Crupi P, Piccinonna S, Bergamini C, Mazzone F, Fanizzi FP, Schena FP, Antonacci D (2015) Classification and chemometric study of Southern Italy monovarietal wines based on NMR and HPLC-DAD-MS. Food Sci Biotechnol 24(3):817–826CrossRefGoogle Scholar
  31. 31.
    Sartor S, Caliari V, Malinovski LI, Toaldo IM, Bordignon-Luiz MT (2017) Bioactive profiling of polyphenolics and oenological properties of red wines from Italian grapes (Vitis vinifera L.) cultivated in a selected subtropical region. Int J Food Prop 20(2):1319–1328Google Scholar
  32. 32.
    Fanzone M, Zamora F, Jofré V, Assof M, Gómez-Cordovés C, Peña-Neira Á (2012) Phenolic characterisation of red wines from different grape varieties cultivated in Mendoza province (Argentina). J Sci Food Agric 92(3):704–718CrossRefGoogle Scholar
  33. 33.
    Rocha-Parra DF, Lanari MC, Zamora MC, Chirife J (2016) Influence of storage conditions on phenolic compounds stability, antioxidant capacity and color of freeze-dried encapsulated red wine. LWT-Food Sci Technol 70:162–170CrossRefGoogle Scholar
  34. 34.
    Wagner LA, Warthesen JJ (1995) Stability of spray-dried encapsulated carrot carotenes. J Food Sci 60(5):1048–1053CrossRefGoogle Scholar
  35. 35.
    Serris GS, Biliaderis CG (2001) Degradation kinetic of beet root pigment encapsulated polymeric matrices. J Sci Food Agric 81:691–700CrossRefGoogle Scholar
  36. 36.
    Heredia FJ, Francia-Aricha EM, Rivas-Gonzalo JC, Vicario IM, Santos-Buelga C (1998) Chromatic characterization of anthocyanins from red grapes—I. pH effect. Food Chem 63(4):491–498CrossRefGoogle Scholar
  37. 37.
    Brouillard R (1982) Chemical structure of anthocyanins. Anthocyanins as food colors. Academic Press, New York, pp 1–38Google Scholar
  38. 38.
    Martínez JA, Melgosa M, Pérez MM, Hita E, Negueruela AI (2001) Note. Visual and instrumental color evaluation in red wines. Food Sci Technol Int 7(5):439–444CrossRefGoogle Scholar
  39. 39.
    Cevallos-Casals BA, Cisneros-Zevallos L (2004) Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chem 86(1):69–77CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Ingeniería y Ciencias Agrarias, Pontificia Universidad Católica ArgentinaBuenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Godoy CruzArgentina
  3. 3.Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA)Luján de CuyoArgentina

Personalised recommendations