Advertisement

Geographical classification of Iranian and Italian saffron sources based on HPLC analysis and UV–Vis spectra of aqueous extracts

  • Solmaz TabtabaeiEmail author
  • Angelo Antonio D’Archivio
  • Maria Anna Maggi
  • Marlon Brutus
  • Diwash H. Bajracharya
  • Dinara Konakbayeva
  • Akbar Soleimani
  • Hassan Brim
  • Hassan Ashktorab
Original Paper
  • 33 Downloads

Abstract

Twenty-nine different Iranian and Italian saffron samples have been characterized using high-performance liquid chromatography (HPLC) equipped with UV–Vis detection as well as ultraviolet–visible (UV–Vis) spectroscopy methods by preparing aqueous extracts according to the ISO 3632 standard. UV–Vis spectral data in the wavelength range of 200–600 nm and the intensities of the chromatographic peaks attributed to picrocrocin, safranal and crocetin esters were considered as variables in principal component analysis (PCA) and linear discriminant analysis (LDA) methods to classify Iranian and Italian saffron samples based on their geographical origin. The geographical classification results based on HPLC data indicated safranal, cis-crocetin (β-d-gentiobiosyl)(β-d-glucosyl) ester (C3Gg), trans-crocetin (β-d-neapolitanosyl)(β-d-glucosyl) ester (T4ng), and trans-crocetin (β-d-gentiobiosyl)(β-d-glucosyl) ester (T3Gg) as the most discriminant. The best classification performance was achieved by the UV–Vis spectra where the most discriminant regions can be associated with both cis- and trans-crocins (326–327 and 260–264 nm), safranal (310 nm), picrocrocin (240–250 nm), and kaempferol derivatives (265 and 340–350 nm).

Keywords

Iranian and Italian saffron Crocetin esters Picrocrocin Safranal Linear discriminant analysis Principal component analysis 

Notes

Acknowledgements

This project was funded in part through Provost Office, Dean of College of Engineering and Architecture (CEA), and Department of Chemical Engineering at Howard University (Washington, DC).  The authors would like to thank Dr. Silvia Bisti for her invaluable comments and highly beneficial suggestions as to the translational perspectives of our work. We would like to thank Gulf Pearls SPRL (Brussels, Belgium, www.gp-food.com), Zarin and Saharkhiz companies that provided saffron for our research studies. In addition, we would like to thank all the growers and people involved in the production of this golden spice, saffron.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no competing interests.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Ríos JL, Recio MC, Giner RM, Máñez S (1996) An update review of saffron and its active constituents. Phyther Res 10:189–193.  https://doi.org/10.1002/(SICI)1099-1573(199605)10:3%3c189:AID-PTR754%3e3.0.CO;2-C CrossRefGoogle Scholar
  2. 2.
    Hassani FV, Naseri V, Razavi B, Mehri S, Abnous K, Hosseinzadeh H (2014) Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. DARU J Pharm Sci 22:16.  https://doi.org/10.1186/2008-2231-22-16 CrossRefGoogle Scholar
  3. 3.
    Hosseinzadeh H, Abootorabi A, Sadeghnia HR (2008) Protective effect of Crocus sativus stigma extract and crocin (trans -crocin 4) on methyl methanesulfonate–induced DNA damage in mice organs. DNA Cell Biol 27:657–664.  https://doi.org/10.1089/dna.2008.0767 CrossRefGoogle Scholar
  4. 4.
    Escribano J, Alonso GL, Coca-Prados M, Fernandez JA (1996) Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett 100:23–30CrossRefGoogle Scholar
  5. 5.
    Ashrafi M, Bathaie SZ, Taghikhani M, Moosavi-Movahedi AA (2005) The effect of carotenoids obtained from saffron on histone H1 structure and H1–DNA interaction. Int J Biol Macromol 36:246–252.  https://doi.org/10.1016/J.IJBIOMAC.2005.05.008 CrossRefGoogle Scholar
  6. 6.
    Ashktorab H, Soleimani A, Singh G, Amin A, Tabtabaei S, Latella G, Stein U, Akhondzadeh S, Solanki N, Gondre-Lewis MC, Habtezion A, Brim H (2019) Saffron: the golden spice with therapeutic properties on digestive diseases. Nutrients 11:943.  https://doi.org/10.3390/nu11050943 CrossRefGoogle Scholar
  7. 7.
    Carmona M, Martínez J, Zalacain A, Rodríguez-Méndez ML, de Saja JA, Alonso GL (2006) Analysis of saffron volatile fraction by TD–GC–MS and e-nose. Eur Food Res Technol 223:96–101.  https://doi.org/10.1007/s00217-005-0144-5 CrossRefGoogle Scholar
  8. 8.
    Carmona M, Zalacain A, Sánchez AM, Novella JL, Alonso GL (2006) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC–ESI–MS. J Agric Food Chem 54:973–979.  https://doi.org/10.1021/jf052297w CrossRefGoogle Scholar
  9. 9.
    Lage M, Cantrell CL (2009) Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci Hortic (Amsterdam) 121:366–373.  https://doi.org/10.1016/J.SCIENTA.2009.02.017 CrossRefGoogle Scholar
  10. 10.
    International Organization for Standardization (2011) ISO 3632- 2, Technical Specification. Saffron (Crocus sativus L.). Part 1 (Specification) and Part 2 (Test Methods). Geneva, SwitzerlandGoogle Scholar
  11. 11.
    García-Rodríguez MV, Serrano-Díaz J, Tarantilis PA et al (2014) Determination of saffron quality by high-performance liquid chromatography. J Agric Food Chem 62:8068–8074.  https://doi.org/10.1021/jf5019356 CrossRefGoogle Scholar
  12. 12.
    García-Rodríguez MV, López-Córcoles H, Alonso GL, Pappas CS, Polissiou MG, Tarantilis PA (2017) Comparative evaluation of an ISO 3632 method and an HPLC–DAD method for safranal quantity determination in saffron. Food Chem 221:838–843.  https://doi.org/10.1016/J.FOODCHEM.2016.11.089 CrossRefGoogle Scholar
  13. 13.
    Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Hajisoltani R, Bandegi AR, Motamedi F, Haghighi S, Sameni H, Pahlvan S (2011) Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol 667:222–229.  https://doi.org/10.1016/j.ejphar.2011.05.012 CrossRefGoogle Scholar
  14. 14.
    Papandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M, Lamari FN (2006) Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem 54:8762–8768.  https://doi.org/10.1021/jf061932a CrossRefGoogle Scholar
  15. 15.
    Tarantilis PA, Polissiou M, Manfait M (1994) Separation of picrocrocin, cis-trans-crocins and safranal of saffron using high-performance liquid chromatography with photodiode-array detection. J Chromatogr A 664:55–61.  https://doi.org/10.1016/0021-9673(94)80628-4 CrossRefGoogle Scholar
  16. 16.
    Corti P, Mazzei E, Ferri S, Franchi GG, Dreassi E (1996) High performance thin layer chromatographic quantitative analysis of picrocrocin and crocetin, active principles of saffron (Crocus sativusL.-Iridaceae): a new method. Phytochem Anal 7:201–203.  https://doi.org/10.1002/(SICI)1099-1565(199607)7:4%3c201:AID-PCA304%3e3.0.CO;2-4 CrossRefGoogle Scholar
  17. 17.
    Sampathu SR, Shivashankar S, Lewis YS, Wood AB (1984) Saffron (Crocus Sativus Linn.)—cultivation, processing, chemistry and standardization. C R C Crit Rev Food Sci Nutr 20:123–157.  https://doi.org/10.1080/10408398409527386 CrossRefGoogle Scholar
  18. 18.
    Tarantilis PA, Tsoupras G, Polissiou M (1995) Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. J Chromatogr A 699:107–118.  https://doi.org/10.1016/0021-9673(95)00044-N CrossRefGoogle Scholar
  19. 19.
    Rubert J, Lacina O, Zachariasova M, Hajslova J (2016) Saffron authentication based on liquid chromatography high resolution tandem mass spectrometry and multivariate data analysis. Food Chem 204:201–209.  https://doi.org/10.1016/J.FOODCHEM.2016.01.003 CrossRefGoogle Scholar
  20. 20.
    Masi E, Taiti C, Heimler D, Vignolini P, Romani A, Mancuso S (2016) PTR–TOF–MS and HPLC analysis in the characterization of saffron (Crocus sativus L.) from Italy and Iran. Food Chem 192:75–81.  https://doi.org/10.1016/j.foodchem.2015.06.090 CrossRefGoogle Scholar
  21. 21.
    D’Archivio AA, Giannitto A, Maggi MA, Ruggieri F (2016) Geographical classification of Italian saffron (Crocus sativus L.) based on chemical constituents determined by high-performance liquid-chromatography and by using linear discriminant analysis. Food Chem 212:110–116.  https://doi.org/10.1016/j.foodchem.2016.05.149 CrossRefGoogle Scholar
  22. 22.
    Cossignani L, Urbani E, Simonetti MS, Maurizi A, Chiesi C, Blasi F (2014) Characterisation of secondary metabolites in saffron from central Italy (Cascia, Umbria). Food Chem 143:446–451.  https://doi.org/10.1016/j.foodchem.2013.08.020 CrossRefGoogle Scholar
  23. 23.
    Carmona M, Sánchez AM, Ferreres F, Zalacain A, Tomás-Barberán F, Alonso GL (2007) Identification of the flavonoid fraction in saffron spice by LC/DAD/MS/MS: comparative study of samples from different geographical origins. Food Chem 100:445–450.  https://doi.org/10.1016/J.FOODCHEM.2005.09.065 CrossRefGoogle Scholar
  24. 24.
    Ferrara L, Naviglio D, Gallo M (2014) Extraction of bioactive compounds of saffron (Crocus sativus L.) by ultrasound assisted extraction (UAE) and by rapid solid-liquid dynamic extraction (RSLDE). Eur Sci J 10:1–13Google Scholar
  25. 25.
    Verma RS, Middha D (2010) Analysis of saffron (Crocus sativus L. Stigma) components by LC–MS–MS. Chromatographia 71:117–123.  https://doi.org/10.1365/s10337-009-1398-z CrossRefGoogle Scholar
  26. 26.
    Maggi L, Carmona M, Kelly SD, Marigheto N, Alonso GL (2011) Geographical origin differentiation of saffron spice (Crocus sativus L. stigmas)—preliminary investigation using chemical and multi-element (H, C, N) stable isotope analysis. Food Chem 128:543–548.  https://doi.org/10.1016/j.foodchem.2011.03.063 CrossRefGoogle Scholar
  27. 27.
    D’Archivio AA, Giannitto A, Incani A, Nisi S (2014) Analysis of the mineral composition of Italian saffron by ICP–MS and classification of geographical origin. Food Chem 157:485–489.  https://doi.org/10.1016/J.FOODCHEM.2014.02.068 CrossRefGoogle Scholar
  28. 28.
    Anastasaki E, Kanakis C, Pappas C, Maggi L, del Campo CP, Carmona M, Alonso GL, Polissiou MG (2009) Geographical differentiation of saffron by GC–MS/FID and chemometrics. Eur Food Res Technol 229:899–905.  https://doi.org/10.1007/s00217-009-1125-x CrossRefGoogle Scholar
  29. 29.
    D’Archivio AA, Di Pietro L, Maggi MA, Rossi L (2018) Optimization using chemometrics of HS–SPME/GC–MS profiling of saffron aroma and identification of geographical volatile markers. Eur Food Res Technol 244:1605–1613.  https://doi.org/10.1007/s00217-018-3073-9 CrossRefGoogle Scholar
  30. 30.
    Anastasaki EG, Kanakis C, Pappas C, Maggi L, del Campo CP, Carmona M, Alonso GL, Polissiou MG (2010) Differentiation of saffron from four countries by mid-infrared spectroscopy and multivariate analysis. Eur Food Res Technol 230:571–577.  https://doi.org/10.1007/s00217-009-1197-7 CrossRefGoogle Scholar
  31. 31.
    D’Archivio AA, Maggi MA (2017) Geographical identification of saffron (Crocus sativus L.) by linear discriminant analysis applied to the UV–visible spectra of aqueous extracts. Food Chem 219:408–413.  https://doi.org/10.1016/j.foodchem.2016.09.169 CrossRefGoogle Scholar
  32. 32.
    Cagliani LR, Culeddu N, Chessa M, Consonni R (2015) NMR investigations for a quality assessment of Italian PDO saffron (Crocus sativus L.). Food Control 50:342–348.  https://doi.org/10.1016/J.FOODCONT.2014.09.017 CrossRefGoogle Scholar
  33. 33.
    Anastasaki EG, Kanakis CD, Pappas C, Maggi L, Zalacain A, Carmona M, Alonso G, Polissiou MG (2010) quantification of crocetin esters in saffron (Crocus sativus L.) using Raman spectroscopy and chemometrics. J Agric Food Chem 58:6011–6017.  https://doi.org/10.1021/jf100143n CrossRefGoogle Scholar
  34. 34.
    Forina M, Lanteri S, Armanino C, Casolino C, Casale M, Oliveri P (2010) V-PARVUS 2010 Dipartimento di Chimica e Tecnologie, Farmaceutiche edn. Università di Genova, AlimentariGoogle Scholar
  35. 35.
    Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52.  https://doi.org/10.1016/0169-7439(87)80084-9 CrossRefGoogle Scholar
  36. 36.
    Härdle WK, Simar L (2015) Applied Multivariate Statistical Analysis, 4th edn. Springer, Berlin Heidelberg.  https://doi.org/10.1007/978-3-662-45171-7 Google Scholar
  37. 37.
    Rinnan Å, van den Berg F, Engelsen SB (2009) Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal Chem 28:1201–1222.  https://doi.org/10.1016/J.TRAC.2009.07.007 CrossRefGoogle Scholar
  38. 38.
    Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11:137–148.  https://doi.org/10.1080/00401706.1969.10490666 CrossRefGoogle Scholar
  39. 39.
    Naviglio D, Conti S, Ferrara L, Santini A (2010) Determination of moisture in powder and lyophilised saffron (Crocus sativus L.) by Karl Fischer method. Open Food Sci J 4:1–6CrossRefGoogle Scholar
  40. 40.
    Moras B, Loffredo L, Rey S (2018) Quality assessment of saffron (Crocus sativus L.) extracts via UHPLC-DAD-MS analysis and detection of adulteration using gardenia fruit extract (Gardenia jasminoides Ellis). Food Chem 257:325–332.  https://doi.org/10.1016/j.foodchem.2018.03.025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Solmaz Tabtabaei
    • 1
    Email author
  • Angelo Antonio D’Archivio
    • 2
  • Maria Anna Maggi
    • 3
  • Marlon Brutus
    • 1
  • Diwash H. Bajracharya
    • 1
  • Dinara Konakbayeva
    • 1
  • Akbar Soleimani
    • 4
  • Hassan Brim
    • 4
  • Hassan Ashktorab
    • 4
  1. 1.Department of Chemical EngineeringHoward UniversityWashingtonUSA
  2. 2.Dipartimento di Scienze Fisiche e ChimicheUniversità degli Studi dell’AquilaL’AquilaItaly
  3. 3.Hortus NovusL’AquilaItaly
  4. 4.Department of Medicine, Department of Pathology and Cancer CenterHoward University College of MedicineWashingtonUSA

Personalised recommendations