On the use of vibrational spectroscopy and scanning electron microscopy to study phenolic extractability of cooperage byproducts in wine

  • Berta Baca-Bocanegra
  • Julio Nogales-Bueno
  • Brian Gorey
  • Francisco José HerediaEmail author
  • Hugh J. Byrne
  • José Miguel Hernández-Hierro
Original Paper


Wood is an important source of phenolic compounds, which can be transferred to wine during aging process, improving its properties, from an organoleptic point of view. Therefore, understanding and optimizing the extractability of phenolic compounds from wood are crucial in the oenological field. The structural composition of oak wood samples has been evaluated using Raman and attenuated total reflectance Fourier transform infrared (ATR–FTIR) spectroscopies, and their main spectral features have been linked to phenolic compound extractabilities, as measured by classic chemical analyses. To support the analysis, microscopic images of the samples were also recorded using scanning electron microscopy (SEM). The applied methodology is shown to be useful to relate the wood cell wall structure to phenolic extractability levels of wood samples. It could assist in selecting oak wood suited for improving wine quality with regard to its color or/and stability through the addiction of external copigments to wine.


Red wine Oak wood Phenolic extractability Vibrational spectroscopy Scanning electron microscopy 



Attenuated total reflectance Fourier transform infrared


Diode array detector




Mahalanobis distance


Multiplicative scatter correction


Non-extracted material


Neighborhood Mahalanobis distance


Near infrared


Near infrared spectroscopy


Principal component


Principal component analysis


Scanning electron microscopy



This work was supported by the Spanish MINECO [AGL2017-84793-C2] and Universidad de Sevilla [VPPI-II.2, VPPI-II.4, VIPPI-EEBB-PIF 2017].

The authors thank the technical staff of Biology Service [Servicios Generales de Investigación (SGI), Universidad de Sevilla]. They also thank Tonelería Salas S.L. (Bollulos Par del Condado, Huelva, Spain) for supplying the cooperage byproduct samples.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with animal or human subjects.


  1. 1.
    Gordillo B, Rodriguez-Pulido FJ, Mateus N, Escudero-Gilete ML, Gonzalez-Miret ML, Heredia FJ, de Freitas V (2012) Application of LC-MS and tristimulus colorimetry to assess the ageing aptitude of Syrah wine in the Condado de Huelva D.O. (Spain), a typical warm climate region. Anal Chim Acta 732:162–171CrossRefGoogle Scholar
  2. 2.
    Mira de Orduña R (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43:1844–1855CrossRefGoogle Scholar
  3. 3.
    Mori K, Sugaya S, Gemma H (2005) Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hortic-Amsterdam 105:319–330CrossRefGoogle Scholar
  4. 4.
    Boulton R (2001) The copigmentation of anthocyanins and its role in the color of red wines. A critical review. Am J Enol Vitic 52:67–87Google Scholar
  5. 5.
    Bautista-Ortín AB, Lencina AG, Cano-López M, Pardo-Mínguez F, López-Roca JM, Gómez-Plaza E (2008) The use of oak chips during the ageing of a red wine in stainless steel tanks or used barrels: effect of the contact time and size of the oak chips on aroma compounds. Aust J Grape Wine Res 14:63–70CrossRefGoogle Scholar
  6. 6.
    Gordillo B, Baca-Bocanegra B, Rodríguez-Pulido FJ, Gonzalez-Miret ML, García Estévez I, Quijada-Morin N, Heredia FJ, Escribano-Bailón MT (2016) Optimisation of an oak chips-grape mix maceration process. Influence of chip dose and maceration time. Food Chem 206:249–259CrossRefGoogle Scholar
  7. 7.
    Eriksson K-EL, Blanchette RE, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Morrell JJ, Gartner BL (1998) Wood as a material. Bruce, A. & Palfreyman, J.W., LondonGoogle Scholar
  9. 9.
    Del Álamo Sanza M, Nevares Domínguez I (2006) Wine aging in bottle from artificial systems (staves and chips) and oak woods. Anal Chim Acta 563:255–263CrossRefGoogle Scholar
  10. 10.
    Fernández de Simón B, Cadahía E, Del Álamo Sanza M, Nevares I (2010) Effect of size, seasoning and toasting in the volatile compounds in toasted oak wood and in a red wine treated with them. Anal Chim Acta 660:211–220CrossRefGoogle Scholar
  11. 11.
    Frangipane MT, Santis DD, Ceccarelli A (2007) Influence of oak woods of different geographical origins on quality of wines aged in barriques and using oak chips. Food Chem 103:46–54CrossRefGoogle Scholar
  12. 12.
    Colares CJG, Pastore TCM, Coradin VTR, Marques LF, Moreira ACO, Alexandrino GL, Poppi RJ, Braga JWB (2016) Near infrared hyperspectral imaging and MCR–ALS applied for mapping chemical composition of the wood specie Swietenia macrophylla King (Mahogany) at microscopic level. Microchem J 124:356–363CrossRefGoogle Scholar
  13. 13.
    Masson G, Moutounet M, Puech JL (1995) Ellagitannin content of oak wood as a function of species and of sampling position in the tree. Am J Enol Vitic 46:262–268Google Scholar
  14. 14.
    Fournand D, Vicens A, Sidhoum L, Souquet JM, Moutounet M, Cheynier V (2006) Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. J Agric Food Chem 54:7331–7338CrossRefGoogle Scholar
  15. 15.
    Hernandez-Hierro JM, Quijada-Morin N, Martinez-Lapuente L, Guadalupe Z, Ayestaran B, Rivas-Gonzalo JC, Escribano-Bailon MT (2014) Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree. Food Chem 146:41–47CrossRefGoogle Scholar
  16. 16.
    Hernandez-Hierro JM, Quijada-Morin N, Rivas-Gonzalo JC, Escribano-Bailon MT (2012) Influence of the physiological stage and the content of soluble solids on the anthocyanin extractability of Vitis vinifera L. cv. Tempranillo grapes. Anal Chim Acta 732:26–32CrossRefGoogle Scholar
  17. 17.
    Quijada-Morín N, Hernández-Hierro JM, Rivas-Gonzalo JC, Escribano-Bailón MT (2015) Extractability of low molecular mass flavanols and flavonols from red grape skins. Relationship to cell wall composition at different ripeness stages. J Agric Food Chem 63:7654–7662CrossRefGoogle Scholar
  18. 18.
    Torchio F, Cagnasso E, Gerbi V, Rolle L (2010) Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas. Anal Chim Acta 660:183–189CrossRefGoogle Scholar
  19. 19.
    Zouid I, Siret R, Jourjon F, Mehinagic E, Rolle L (2013) Impact of grapes heterogeneity according to sugar level on both physical and mechanical merries properties and their anthocyanins extractability at harvest. J Texture Stud 44:95–103CrossRefGoogle Scholar
  20. 20.
    González-Manzano S, Rivas-Gonzalo JC, Santos-Buelga C (2004) Extraction of flavan-3-ols from grape seed and skin into wine using simulated maceration. Anal Chim Acta 513:283–289CrossRefGoogle Scholar
  21. 21.
    Byrne HJ, Ostrowska MK, Nawaz H, Dorney J, Meade DA, Bonnier F, Lyng MF (2014) Vibrational spectroscopy: disease diagnostics and beyond. In: Baranska M (ed) Optical spectroscopy and computational methods in biology and medicine. Springer Netherlands, Dordrecht, pp 355–399. CrossRefGoogle Scholar
  22. 22.
    Byrne HJ, Sockalingum GD, Stone N (2011) Chapter 4 Raman microscopy: complement or competitor? In: Moss D (ed) Biomedical applications of synchrotron infrared microspectroscopy: a practical approach. The Royal Society of Chemistry, Karlsruhe, Germany, pp 105–143. Google Scholar
  23. 23.
    Baca-Bocanegra B, Nogales-Bueno J, Hernandez-Hierro JM, Heredia FJ (2018) Evaluation of extractable polyphenols released to wine from cooperage byproduct by near infrared hyperspectral imaging. Food Chem 244:206–212CrossRefGoogle Scholar
  24. 24.
    Giordanengo T, Charpentier JP, Boizot N, Roussel S, Roger JM, Chaix G, Robin C, Mourey N (2009) Oakscan: procédé de mesure rapide et non destructif des polyphénols du bois de chêne de tonnellerie. Revue française d’Oenologie 234:10–15Google Scholar
  25. 25.
    Zahri S, Moubarik A, Charrier F, Chaix G, Bailleres H, Nepveu G, Charrier B (2008) Quantitative assessment of total phenol contents of European oak (Quercus petraea and Quercus robur) by diffuse reflectance NIR spectroscopy on solid wood surfaces. Holzforschung 62:679–687CrossRefGoogle Scholar
  26. 26.
    Baca-Bocanegra B, Nogales-Bueno J, García-Estévez I, Escribano-Bailón MT, Hernández-Hierro JM, Heredia FJ (2019) Screening of wine extractable total phenolic and ellagitannin contents in revalorized cooperage by-products: evaluation by micro-NIRS technology. Food Bioproc Tech 12:477–485CrossRefGoogle Scholar
  27. 27.
    Bokobza L (1998) Near infrared spectroscopy. J Near Infrared Spectrosc 6:3–17CrossRefGoogle Scholar
  28. 28.
    Chen H, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E (2010) Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym 82:772–778CrossRefGoogle Scholar
  29. 29.
    Jaaskelainen AS, Nuopponen M, Axelsson P, Tenhunen M, Loija M, Vuorinen T (2003) Determination of lignin distribution in pulps by FTIR ATR spectroscopy. J Pulp Pap Sci 29:328–331Google Scholar
  30. 30.
    Traore M, Kaal J, Cortizas AM (2016) Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochim Acta Part A 153:63–70CrossRefGoogle Scholar
  31. 31.
    Edwards HGM, Cappa de Oliveira LF, Nesbitt M (2003) Fourier-transform Raman characterization of brazilwood trees and substitutes. Analyst 128:82–87CrossRefGoogle Scholar
  32. 32.
    Gerasimov VA, Gurovich AM, Kostrin DK, Selivanov LM, Simon VA, Stuchenkov AB, Paltcev AV, Uhov AA (2016) Raman spectroscopy for identification of wood species. J Phys Conf Ser 741:012131.
  33. 33.
    Evans PA (1991) Differentiating hard from soft woods using fourier-transform infrared and fourier-transform raman-spectroscopy. Spectrochim Acta Part A 47:1441–1447CrossRefGoogle Scholar
  34. 34.
    Colares CJG, Pastore TCM, Coradin VTR, Camargos JAA, Moreira ACO, Rubim JC, Braga JWB (2015) Exploratory analysis of the distribution of lignin and cellulose in woods by raman imaging and chemometrics. J Braz Chem Soc 26:1297–1305Google Scholar
  35. 35.
    Sun L, Simmons BA, Singh S (2011) Understanding tissue specific compositions of bioenergy feedstocks through hyperspectral raman imaging. Biotechnol Bioeng 108:286–295CrossRefGoogle Scholar
  36. 36.
    Nogales-Bueno J, Baca-Bocanegra B, Rooney A, Hernandez-Hierro JM, Byrne HJ, Heredia FJ (2017) Study of phenolic extractability in grape seeds by means of ATR–FTIR and Raman spectroscopy. Food Chem 232:602–609CrossRefGoogle Scholar
  37. 37.
    Nogales-Bueno J, Baca-Bocanegra B, Rooney A, Hernandez-Hierro JM, Jose Heredia F, Byrne HJ (2017) Linking ATR–FTIR and Raman features to phenolic extractability and other attributes in grape skin. Talanta 167:44–50CrossRefGoogle Scholar
  38. 38.
    Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  39. 39.
    Mazet V, Carteret C, Brie D, Idier J, Humbert B (2005) Background removal from spectra by designing and minimising a non-quadratic cost function. Chemometrics Intell Lab Syst 76:121–133CrossRefGoogle Scholar
  40. 40.
    Popescu C-M, Singurel G, Popescu M-C, Vasile C, Argyropoulos DS, Willfor S (2009) Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr Polym 77:851–857CrossRefGoogle Scholar
  41. 41.
    Faix O (1992) Fourier transform infrared spectroscopy. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 83–109. CrossRefGoogle Scholar
  42. 42.
    Karim M, Daryaei MG, Torkaman J, Oladi R, Ghanbary MAT, Bari E (2016) In vivo investigation of chemical alteration in oak wood decayed by Pleurotus ostreatus. Int Biodeterior Biodegrad 108:127–132CrossRefGoogle Scholar
  43. 43.
    Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad 52:151–160CrossRefGoogle Scholar
  44. 44.
    Pandey KK, Theagarajan KS (1997) Analysis of wood surfaces and ground wood by diffuse reflectance (DRIFT) and photoacoustic (PAS) Fourier transform infrared spectroscopic techniques. Holz Roh Werkst 55:383–390CrossRefGoogle Scholar
  45. 45.
    Schultz TP, Glasser WG (1986) Quantitative structural analysis of lignin by diffuse reflectance Fourier transform spectrometry. Holzforschung 40:37–44CrossRefGoogle Scholar
  46. 46.
    Agarwal UP (2014) 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front Plant Sci 5:490CrossRefGoogle Scholar
  47. 47.
    Agarwal UP, McSweeny JD, Ralph SA (2011) FT–Raman investigation of milled-wood lignins: softwood, hardwood, and chemically modified black spruce lignins. J Wood Chem Technol 31:324–344CrossRefGoogle Scholar
  48. 48.
    Jason SL, Emily AS (2012) Characterization of woody and herbaceous biomasses lignin composition with 1064 nm dispersive multichannel Raman spectroscopy. Appl Spectrosc 66:903–910CrossRefGoogle Scholar
  49. 49.
    Larsen KL, Barsberg S (2010) Theoretical and Raman spectroscopic studies of phenolic lignin model monomers. J Phys Chem B 114:8009–8021CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Berta Baca-Bocanegra
    • 1
  • Julio Nogales-Bueno
    • 1
  • Brian Gorey
    • 2
  • Francisco José Heredia
    • 1
    Email author
  • Hugh J. Byrne
    • 2
  • José Miguel Hernández-Hierro
    • 1
  1. 1.Food Color and Quality Laboratory, Área de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de SevillaSevilleSpain
  2. 2.FOCAS Research InstituteDublin Institute of TechnologyDublin 8Ireland

Personalised recommendations