Advertisement

European Food Research and Technology

, Volume 245, Issue 10, pp 2123–2131 | Cite as

A study on acetification process to produce olive vinegar from oil mill wastewaters

  • Antonella De LeonardisEmail author
  • Francesca Masino
  • Vincenzo Macciola
  • Giuseppe Montevecchi
  • Andrea Antonelli
  • Emanuele Marconi
Original Paper
  • 51 Downloads

Abstract

In this study, two different acetification procedures to produce olive vinegar (OV) from oil mill wastewaters (OMW) were assayed. Specifically, (i) alcoholic-acetous double fermentation with addition of Saccharomyces cerevisiae starter was compared with (ii) spontaneous acetification, without addition of any starter. Within few days from their production, the OMWs were diluted with distilled water (40:60, v/v) and supplemented with sucrose (100 g L−1) and yeast nutrients (0.5 g L−1). Both the procedures gave a satisfactory acidification, leaving a final acetic acid concentration of around 4% on average. Significant amount of residual sugars, especially fructose, was found in the OV by spontaneous acetification. Therefore, in relation to the consumed sugars, spontaneous acetification has been more performing in terms of acetic acid formation; in addition, the acetogenesis appeared to occur bypassing the alcoholic fermentation. Finally, both spontaneous and starter-driven OVs were permanently clear, with a vinous red color and without any abnormal smell.

Keywords

Acetic acid Vinegar Olive vinegar Acetification process Olive oil mill wastewaters 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Ho CW, Lazim AM, Fazry S, Zaki UKHH, Lim SJ (2017) Varieties, production, composition and health benefits of vinegars: a review. Food Chem 221:1621–1630CrossRefGoogle Scholar
  2. 2.
    Yanping J, Sheng Z, Li Jun (2010) Preparation of aloe vinegar drinks. Food Sci Technol 35(7):145–147Google Scholar
  3. 3.
    Budak NH, Aykin E, Seydim AC, Greene AK, Guzel-Seydim ZB (2014) Functional properties of vinegar. J Food Sci 79(5):757–764CrossRefGoogle Scholar
  4. 4.
    Kondo S, Tayama K, Tsukamoto Y, Ikeda K, Yamori Y (2001) Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats. Biosci Biotechnol Biochem 65(12):2690–2694CrossRefGoogle Scholar
  5. 5.
    Östman E, Granfeldt Y, Persson L, Björck I (2005) Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur J Clin Nutr 59(9):983–988CrossRefGoogle Scholar
  6. 6.
    Salbe AD, Johnston CS, Buyukbese MA, Tsitouras PD, Harman SM (2009) Vinegar lacks antiglycemic action on enteral carbohydrate absorption in human subjects. Nutr Res 29(12):846–849CrossRefGoogle Scholar
  7. 7.
    Ali Z, Wang Z, Amir RM, Younas S, Wali A, Adowa N, Ayim I (2016) Potential uses of vinegar as a medicine and related in vivo mechanisms. Int J Vitam Nutr Res 86:127–151CrossRefGoogle Scholar
  8. 8.
    Masino F, Chinnici F, Bendini A, Montevecchi G, Antonelli A (2008) A study on relationships among chemical, physical, and qualitative assessment in traditional balsamic vinegar. Food Chem 106:90–95CrossRefGoogle Scholar
  9. 9.
    Shahidi F, McDonald J, Chandrasekara A, Zhong Y (2008) Phytochemicals of foods, beverages and fruit vinegars: chemistry and health effects. Asia Pac J Clin Nutr 17:380–382PubMedGoogle Scholar
  10. 10.
    Chen H, Chen T, Giudici P, Chen F (2016) Vinegar functions on health: constituents, sources, and formation mechanisms. Compr Rev Food Sci Food Saf 15(6):1124–1138CrossRefGoogle Scholar
  11. 11.
    Visioli F, Borsani L, Galli C (2000) Diet and prevention of coronary disease: the potential role of phytochemicals. Cardiovasc Res 47:419–425CrossRefGoogle Scholar
  12. 12.
    Dell’Agli M, Busciala A, Bosisio E (2004) Vascular effects of wine polyphenols. Cardiovasc Res 63:593–602CrossRefGoogle Scholar
  13. 13.
    Vidra A, Németh Á (2018) Bio-produced acetic acid: a review. Period Polytech Chem Eng 62(3):245–256CrossRefGoogle Scholar
  14. 14.
    Li S, Li P, Feng F, Luo LX (2015) Microbial diversity and their roles in the vinegar fermentation process. Appl Microbiol Biotechnol 99(12):4997–5024CrossRefGoogle Scholar
  15. 15.
    Sengun IY, Karabiyikli S (2011) Importance of acetic acid bacteria in food industry. Food Control 22(5):647–656CrossRefGoogle Scholar
  16. 16.
    Schuchmann K, Müller V (2016) Energetic and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 82(14):4056–4069CrossRefGoogle Scholar
  17. 17.
    Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450CrossRefGoogle Scholar
  18. 18.
    Schwartz RD, Keller FA (1982) Acetic acid production by Clostridium thermoaceticum in pH-controlled batch fermentations at acidic pH. Appl Environ Microbiol 43(6):1385–1392PubMedPubMedCentralGoogle Scholar
  19. 19.
    Parekh SR, Cheryan M (1994) Continuous production of acetate by Clostridium thermoaceticum in a cell-recycle membrane bioreactor. Enzyme Microb Technol 16(2):104–109CrossRefGoogle Scholar
  20. 20.
    Paredes C, Cegarra J, Roig A, Sánchez-Monedero MA, Bernal MP (1999) Characterization of olive mill wastewater (alpechin) and its sludge for agricultural purposes. Bioresour Technol 67(2):111–115CrossRefGoogle Scholar
  21. 21.
    De Leonardis A, Macciola V, Nag A (2009) Antioxidant activity of various phenol extracts of olive-oil mill wastewaters. Acta Aliment 38(1):77–87CrossRefGoogle Scholar
  22. 22.
    D’Annibale A, Sermanni GG, Federici F, Petruccioli M (2006) Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresour Technol 97:1828–1833CrossRefGoogle Scholar
  23. 23.
    McNamara CJ, Anastasiou CC, O’Flaherty V, Mitchell R (2008) Bioremediation of olive mill wastewater. Int Biodeterior Biodegrad 61(2):127–134CrossRefGoogle Scholar
  24. 24.
    De Leonardis A, Macciola V, Iorizzo M, Lombardi SJ, Lopez F, Marconi E (2018) Effective assay for olive vinegar production from olive oil mill wastewaters. Food Chem 240:437–440CrossRefGoogle Scholar
  25. 25.
    AOAC (1995) Official methods of analysis of the association of official analytical chemists, 16th edn. Association of Analytical Communities, Arlington, USA Official Method 930.35Google Scholar
  26. 26.
    Montevecchi G, Simone GV, Masino F, Bignami C, Antonelli A (2012) Physical and chemical characterization of Pescabivona, a Sicilian white flesh peach cultivar (Prunus persica (L.) Batsch). Food Res Int 45(1):123–131CrossRefGoogle Scholar
  27. 27.
    Iorizzo M, Macciola V, Testa B, Lombardi SJ, De Leonardis A (2014) Physicochemical and sensory characteristics of red wines from the rediscovered autochthonous Tintilia grapevine grown in the Molise region (Italy). Eur Food Res Technol 238(6):1037–1048CrossRefGoogle Scholar
  28. 28.
    Dermeche S, Nadour M, Larroche C, Moulti-Mati F, Michaud P (2013) Olive mill wastes: biochemical characterizations and valorisation strategies. Process Biochem 48(10):1532–1552CrossRefGoogle Scholar
  29. 29.
    Obied HK, Allen MS, Bedgood DR, Prenzler PD, Robards K, Stockmann R (2005) Bioactivity and analysis of biophenols recovered from olive mill waste. J Agric Food Chem 53(4):823–837CrossRefGoogle Scholar
  30. 30.
    Crognale S, D’Annibale A, Federici F, Fenice M, Quaratino D, Petruccioli M (2006) Olive oil mill wastewater valorisation by fungi. J Chem Technol Biotechnol 81:1547–1555CrossRefGoogle Scholar
  31. 31.
    Antonelli A, Chinnici F, Masino F (2004) Heat-induced chemical modification of grape must as related to its concentration during the production of traditional balsamic vinegar: a preliminary approach. Food Chem 88:63–68CrossRefGoogle Scholar
  32. 32.
    Kavroulakis N, Ntougias S (2011) Bacterial and β-proteobacterial diversity in Olea europaea var mastoidis- and O. europaea var. koroneiki- generated olive mill wastewaters: influence of cultivation and harvesting practice on bacterial community structure. World J Microbiol Biotechnol 27(1):57–66CrossRefGoogle Scholar
  33. 33.
    Sinigaglia M, Di Benedetto N, Bevilacqua A, Corbo MR, Capece A, Romano P (2010) Yeasts isolated from olive mill wastewaters from southern Italy: technological characterization and potential use for phenol removal. Appl Microbiol Biotechnol 87(6):2345–2354CrossRefGoogle Scholar
  34. 34.
    Ntougias S, Bourtzis K, Tsiamis G (2013) The microbiology of olive mill wastes. Bio Med Res Int 2013:784591Google Scholar
  35. 35.
    Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (eds) (2006) Handbook of enology. The microbiology of wine and vinifications, vol 1. Wiley, New YorkGoogle Scholar
  36. 36.
    Romano P, Suzzi G (1996) Origin and production of acetoin during wine yeast fermentation. Appl Environ Microbiol 62(2):309–315PubMedPubMedCentralGoogle Scholar
  37. 37.
    WHO (1997) Environmental health criteria 196: methanol. World Health Organization, GenevaGoogle Scholar
  38. 38.
    Bourgeois JF, McColl I, Barja F (2006) Formic acid, acetic acid and methanol. Arch Sci 59:107–112Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Antonella De Leonardis
    • 1
    Email author
  • Francesca Masino
    • 2
    • 3
  • Vincenzo Macciola
    • 1
  • Giuseppe Montevecchi
    • 3
  • Andrea Antonelli
    • 2
    • 3
  • Emanuele Marconi
    • 1
  1. 1.Department of Agricultural, Environmental and Food Sciences (DiAAA)University of MoliseCampobassoItaly
  2. 2.Department of Life ScienceUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
  3. 3.Centro di Ricerca Interdipartimentale per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agro-Alimentari BIOGEST-SITEIAUniversity of Modena e Reggio EmiliaReggio EmiliaItaly

Personalised recommendations