Advertisement

European Food Research and Technology

, Volume 245, Issue 9, pp 2017–2026 | Cite as

Physicochemical properties, colour, chemical composition, and antioxidant activity of Spanish Quercus honeydew honeys

  • M. José Jara-Palacios
  • Francisco José Ávila
  • M. Luisa Escudero-Gilete
  • Antonio Gómez Pajuelo
  • Francisco J. Heredia
  • Dolores HernanzEmail author
  • Anass Terrab
Original Paper

Abstract

The emergent market for honeydew honeys in Europe prompt to increasing requirements of consumers and honey industry for the characterisation of this type of honey. The aim of this study was to characterise 59 samples of Spanish oak honeydew honeys. Physicochemical properties showed values within the limits established by the legislation and typical for honeydew honeys. Honeys were differentiated into two groups according to the hue (hab) and all were classified as dark honeys (L* < 55). A total of 14 minerals were determined, with K, P, Mg, and Ca being the most abundant. The development and validation of an HPLC method allowed the determination of the contents of two monosaccharides, five disaccharides, and two trisaccharides. Total phenolic and flavonoid contents showed mean values of 130.2 mg/100 g and 11.3 mg/100 g of honey, respectively. Honeydew honeys showed ability to scavenge free radicals and to inhibit lipid peroxidation, which is very interesting, because, as far as we know, there are no previous studies for this type of honey. Results showed that all honeydew honeys are a source of chemical compounds with nutritional and antioxidant properties that could be of interest for consumers and food industry.

Keywords

Oak honey Minerals Sugars Phenols Flavonoids Antioxidant activity 

Abbreviations

CE

Catechin equivalents

GAE

Gallic acid equivalents

HMF

Hydroxymethylfurfural

LOD

Limit of detection

LOQ

Limit of quantification

RID

Differential refractive index detector

TBARS

Thiobarbituric acid reactive substances

TE

Trolox equivalent

TEAC

Trolox equivalent antioxidant capacity

TFC

Total flavonoid content

TPC

Total phenolic content

Notes

Acknowledgements

The authors would like to thank the following Spanish beekeepers for providing the honey samples: AlpuMiel, Apicasfer SL, Apicultura Moisés, Erica Mel SCG, Mel de L’Avi Lluis, Mel Muria, Miel La Puela SL, Mielar SA, Mieles Sala Higón SL, Mielso SL., Montemiel SC, Naturval Apícola SLU, Primo Mendoza SL, Rodríguez Robledo, Sierra Miel SC, and Torrons i Mel Alemany SL. The authors also acknowledge the assistance of the technical staff of Biology Service (SGI, Universidad de Sevilla).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Maschwitz U, Dumpert K, Tuck KR (1986) Ants feeding on anal exudate from tortricid larvae: a new type of trophobiosis. J Nat Hist 20:1041–1050CrossRefGoogle Scholar
  2. 2.
    Delabie JHC (2001) Trophobiosis between formicidae and hemiptera (Sternorrhyncha and Auchenorrhyncha): an overview. Neotrop Entomol 30:501–516CrossRefGoogle Scholar
  3. 3.
    Carter CI, Maslen NR (1982) Conifer lachnids. Forestry commission bulletin, 58th edn. HMSO, LondonGoogle Scholar
  4. 4.
    Binazzi A, Scheurer S (2009) Atlas of the honeydew producing conifer aphids of Europe. Aracne, RomeGoogle Scholar
  5. 5.
    Persano Oddo L, Piro R (2004) Main European unifloral honeys: descriptive sheets. Apidologie 35:38–81CrossRefGoogle Scholar
  6. 6.
    Jerković I, Marijanović Z (2010) Oak (Quercus frainetto Ten.) honeydew honey approach to screening of volatile organic composition and antioxidant capacity (DPPH and FRAP Assay). Molecules 15:3744–3756CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rybak-Chmielewska H, Szczęsna T, Waś E, Jaśkiewicz K, Teper D (2013) Characteristics of Polish unifloral honeys IV. honeydew honey, mainly Abies alba L. J Apic Sci 57:51–59Google Scholar
  8. 8.
    Castro-Vázquez L, Díaz-Maroto MC, Pérez-Coello MS (2006) Volatile composition and contribution to the aroma of Spanish honeydew honeys. Identification of a new chemical marker. J Agric Food Chem 54:4809–4813CrossRefPubMedGoogle Scholar
  9. 9.
    Rodríguez Flores MS, Escuredo O, Seijo MC (2015) Assessment of physicochemical and antioxidant characteristics of Quercus pyrenaica honeydew honeys. Food Chem 166:101–106CrossRefGoogle Scholar
  10. 10.
    Krakar D (2012) Characteristics of Croatian oak honeydew honey from the Požega Valley. Radovi Zavoda za znanstveni i umjetniĉki rad u Požegi 1:375–397Google Scholar
  11. 11.
    Bentabol Manzanares A, Hernández-García Z, Rodríguez-Galdón B, Rodríguez-Rodríguez E, Díaz-Romero C (2011) Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chem 126:664–672CrossRefGoogle Scholar
  12. 12.
    Simova S, Atanassov A, Shishiniova M, Bankova V (2012) A rapid differentiation between oak honeydew honey and nectar and other honeydew honeys by NMR spectroscopy. Food Chem 134:1706–1710CrossRefPubMedGoogle Scholar
  13. 13.
    Pita-Calvo C, Vázquez M (2017) Differences between honeydew and blossom honeys: a review. Trends Food Sci Technol 59:79–87CrossRefGoogle Scholar
  14. 14.
    Vela L, De Lorenzo C, Pérez RA (2007) Antioxidant capacity of Spanish honeys and its correlation with polyphenol content and other physicochemical properties. J Sci Food Agric 87:1069–1075CrossRefGoogle Scholar
  15. 15.
    Escuredo O, Míguez M, Fernández-González M, Seijo MC (2013) Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138:851–856CrossRefPubMedGoogle Scholar
  16. 16.
    Karabagias IK, Vlasiou M, Kontakos S, Drouza C, Kontominas MG, Keramidas AD (2018) Geographical discrimination of pine and fir honeys using multivariate analyses of major and minor honey components identified by 1H NMR and HPLC along with physicochemical data. Eur Food Res Technol 244:1249–1259CrossRefGoogle Scholar
  17. 17.
    Lachman J, Orsák M, Hejtmánková A, Kovárová E (2010) Evaluation of antioxidant activity and total phenolics of selected Czech honeys. LWT-Food Sci Technol 43:52–58CrossRefGoogle Scholar
  18. 18.
    Escuredo O, Silva LR, Valentão P, Seijo MC, Andrade PB (2012) Assessing Rubus honey value: pollen and phenolic compounds content and antibacterial capacity. Food Chem 130:671–678CrossRefGoogle Scholar
  19. 19.
    Terrab A, Berjano R, Sanchez JA, Gómez Pajuelo A, Díez MJ (2019) Palynological and geographical characterisation of Spanish oak honeydew honeys. Grana 58:63–77CrossRefGoogle Scholar
  20. 20.
    AOAC (2005) AOAC Official method 920175 official methods of analysis, 18th edn. AOAC International, GaithersburgGoogle Scholar
  21. 21.
    Jara-Palacios MJ, Goncalves S, Hernanz D, Heredia FJ, Romano A (2018) Effects of In vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Res Int 109:433–439CrossRefGoogle Scholar
  22. 22.
    Terrab A, Escudero ML, González-Miret ML, Heredia FJ (2004) Colour characteristics of honeys as influenced by pollen grain content: a multivariate study. J Sci Food Agric 84:380–386CrossRefGoogle Scholar
  23. 23.
    Jara-Palacios MJ, Hernanz D, González-Manzano S, Santos-Buelga C, Escudero-Gilete ML, Heredia FJ (2014) Detailed phenolic composition of White grape by-products by RRLC/MS and measurement of the antioxidant activity. Talanta 125:51–57CrossRefPubMedGoogle Scholar
  24. 24.
    Kus PM, Congiu F, Teper D, Sroka Z, Jerkovi I, Tuberoso CIG (2014) Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT Food Sci Technol 55:124–130CrossRefGoogle Scholar
  25. 25.
    Habib HM, Al Meqbali FT, Kamal H, Souka UD, Ibrahim WH (2014) Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions. Food Chem 153:28–34CrossRefPubMedGoogle Scholar
  26. 26.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237CrossRefPubMedGoogle Scholar
  27. 27.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for the lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jara-Palacios MJ, Escudero-Gilete ML, Hernández-Hierro JM, Heredia FJ, Hernanz D (2017) Cyclic voltammetry to evaluate the antioxidant potential in winemaking by products. Talanta 165:211–215CrossRefGoogle Scholar
  29. 29.
    StatSoft Inc. (2007) STATISTICA (data analysis software system), v 8.0., Tulsa, OKGoogle Scholar
  30. 30.
    Council EU (2002) Council directive 2001/110/EC of 20 December 2001 relating to honey. Off J Eur Commun L10:47–52Google Scholar
  31. 31.
    Primorac L, Angelkov B, Mandic ML, Kenjeric D, Nedeljko M, Flanjak I, Pirički AP, Arapceska M (2009) Comparison of the Croatian and Macedonian honeydew honey. J Cent Eur Agric 10:263–270Google Scholar
  32. 32.
    Karabagias IK, Badeka AV, Kontakos S, Karabournioti S, Kontominas MG (2014) Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses. Food Chem 165:181–190CrossRefPubMedGoogle Scholar
  33. 33.
    Can Z, Yildiz O, Sahin H, Turumtay EA, Silici S, Kolayli S (2015) An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem 180:133–141CrossRefPubMedGoogle Scholar
  34. 34.
    Nozal Nalda MJ, Bernal Yagüe JL, Diego Calva JC, Martín Gómez MT (2005) Classifying honeys from the Soria Province of Spain via multivariate analysis. Anal Bioanal Chem 382:311–319CrossRefPubMedGoogle Scholar
  35. 35.
    González-Miret L, Terrab A, Hernanz D, Fernández-Recamales MA, Heredia FJ (2005) Multivariate correlation between color and mineral composition of honeys and by their botanical origin. J Agric Food Chem 53:2574–2580CrossRefPubMedGoogle Scholar
  36. 36.
    Conti ME, Stripeikis J, Campanella L, Cucina D, Tudino MB (2007) Characterization of Italian honeys (Marche Region) on the basis of their mineral content and some typical quality parameters. Chem Cent J 1:14CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Madejczyk M, Baralkiewicz D (2008) Characterization of Polish rape and honeydew honey according to their mineral contents using ICP-MS and F-AAS/AES. Anal Chima Acta 617:11–17CrossRefGoogle Scholar
  38. 38.
    Pisani P, Protano G, Riccobono F (2008) Minor and trace elements in different honey types produced in Siena County (Italy). Food Chem 107:1553–1560CrossRefGoogle Scholar
  39. 39.
    Gamboa-Abril V, Díaz-Moreno C, Figueroa-Ramírez J (2012) Typification of oak (Quercus humboldtti) honeydew honey from Boyaca and Santander. Vitae 19:382–384Google Scholar
  40. 40.
    Kaygusuz H, Tezcan F, Erim FB, Yildiz O, Sahin H, Can Z, Kolayli S (2016) Characterization of Anatolian honeys based on minerals, bioactive components and principal component analysis. LWT Food Sci Technol 68:273–279CrossRefGoogle Scholar
  41. 41.
    Karabagias IK, Louppis AP, Kontakos S, Papastephanou C, Kontominas MG (2017) Characterization and geographical discrimination of Greek pine and thyme honeys based on their mineral content, using chemometrics. Eur Food Res Technol 243:101–113CrossRefGoogle Scholar
  42. 42.
    Golob T, Plestenjak A (1999) Quality of slovene honey. Food Technol Biotech 37:195–201Google Scholar
  43. 43.
    Szczęsna T, Rybak-Chmielewska H, Skubida P (2003) Contribution to the understanding of the phenomenon of “cement” honey. J Apic Sci 47:103–108Google Scholar
  44. 44.
    Al ML, Daniel D, Moise A, Bobis O, Laslo L, Bogdanov S (2009) Physicochemical and bioactive properties of different floral origin honeys from Romania. Food Chem 112:863–867CrossRefGoogle Scholar
  45. 45.
    Flanjak I, Kenjeric D, Bubalo D, Primorac L (2016) Characterisation of selected Croatian honey types based on the combination of antioxidant capacity, quality parameters, and chemometrics. Eur Food Res Technol 242:467–475CrossRefGoogle Scholar
  46. 46.
    Ferreira ICFR, Aires E, Barreira JCM, Estevinho LM (2009) Antioxidant activity of Portuguese honey samples: different contributions of the entire honey and phenolic extract. Food Chem 114:1438–1443CrossRefGoogle Scholar
  47. 47.
    Alvarez-Suarez JM, Giampieri F, Damiani E, Astolfi P, Fattorini D, Regoli F, Quiles JL, Battino M (2012) Radical-scavenging activity, protective effect against lipid peroxidation and mineral contents of monofloral cuban honeys. Plant Foods Hum Nut 67:31–38CrossRefGoogle Scholar
  48. 48.
    Karabagias IK, Dimitriou E, Kontakos S, Kontominas MG (2016) Phenolic profile, colour intensity, and radical scavenging activity of Greek unifloral honeys. Eur Food Res Tech 242:1201–1210CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Food Colour and Quality Laboratory, Área de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de SevillaSevilleSpain
  2. 2.Department of Analytical Chemistry, Facultad de FarmaciaUniversidad de SevillaSevilleSpain
  3. 3.Pajuelo Consultores ApícolasCastellónSpain
  4. 4.Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevilleSpain

Personalised recommendations