Advertisement

Yeast extract production using spent yeast from beer manufacture: influence of industrially applicable disruption methods on selected substance groups with biotechnological relevance

  • Friedrich Felix JacobEmail author
  • Lisa Striegel
  • Michael Rychlik
  • Mathias Hutzler
  • Frank-Jürgen Methner
Original paper
  • 24 Downloads

Abstract

Spent brewer’s yeast is an excellent source of a variety of bioactive substances. In this study, for the first time, the focus was solely on investigating the influence of three industrially applicable cell disruption methods (cell mill, sonotrode, and autolysis) on selected substance groups relevant for physiology and process technology. A consistent spent yeast (Saccharomyces cerevisiae TUM 68) produced in a standardized industrial pilot top-fermenting process was used as a raw material. Using mechanical methods, i.e., cell mill and sonotrode, the protein content (as not hydrolyzed in free amino acids), the trehalose and the total fat content in the yeast extract were increased compared with those produced in the autolytic method. The analyzed B vitamin levels were also higher, the biologically active 5-CH3-H4folate in particular had the greatest proportion in the folate vitamer distribution of the mechanically produced yeast extracts. An increased level of non-fragmented genomic and mitochondrial DNA could also be found in the yeast extract produced via the mechanical methods. The antioxidative and reduction potential was decreased by the degradation of polyphenols and glutathione in the yeast extract following autolysis. The mineral, RNA, glycogen, glucose, fructose and ash contents did not differ significantly. Therefore, the cell mill and sonotrode offered a good alternative method to conventional autolytic procedures, especially to transfer physiologically relevant substance groups in higher concentrations to the yeast extract.

Keywords

Brewer’s spent yeast extract Mechanical cell disruption strategies Autolysis Nutritional value Antioxidative potential Saccharomyces cerevisiae 

Notes

Compliance with ethical standards

Conflict of interest

Friedrich Felix Jacob, Lisa Striegel, Michael Rychlik, Mathias Hutzler and Frank-Jürgen Methner declare that they have no conflict of interest.

Compliance with ethics requirements

The authors Friedrich Felix Jacob, Lisa Striegel, Michael Rychlik, Mathias Hutzler and Frank-Jürgen Methner hereby confirm that this manuscript is performed according and follows the COPE guidelines and has not already been published nor is it under consideration for publication elsewhere. This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Vieira F, Carvalho J, Pinto E, Cunha S, Almeida A, Ferreira I (2016) Nutritive value, antioxidant activity and phenolic compounds profile of brewer’s spent yeast extract. J Food Compos Anal 52:44–51Google Scholar
  2. 2.
    Sommer R (1998) Yeast extracts: production, properties and components. Food Aust 50(4):181–183Google Scholar
  3. 3.
    Liu D, Ding L, Sun J, Boussetta N, Vorobiev E (2016) Yeast cell disruption strategies for recovery of intracellular bio-active compounds—a review. Innov Food Sci Emerg Technol 36:181–192Google Scholar
  4. 4.
    Apar DK, Özbek B (2008) Protein releasing kinetics of bakers’ yeast cells by ultrasound. Chem Biochem Eng Q 22(1):113–118Google Scholar
  5. 5.
    Bystryak S, Santockyte R, Peshkovsky AS (2015) Cell disruption of S. cerevisiae by scalable high-intensity ultrasound. Biochem Eng J 99:99–106Google Scholar
  6. 6.
    Narziß L, Back W, Gastl M, Zarnkow M (2017) Abriss der Bierbrauerei, 8. vollständig überarbeitete und erweiterte Auflage. WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  7. 7.
    Quain DE (2006) Yeast supply and propagation in brewing. In: Brewing: new technologies. Woodhead, Cambridge, pp 167–182Google Scholar
  8. 8.
    Berlowska J, Dudkiewicz-Kołodziejska M, Pawlikowska E, Pielech-Przybylska K, Balcerek M, Czysowska A, Kregiel D (2017) Utilization of post-fermentation yeasts for yeast extract production by autolysis: the effect of yeast strain and saponin from Quillaja saponaria. J Inst Brew 123:396–401Google Scholar
  9. 9.
    Martinezforce E, Benitez T (1995) Effects of varying media, temperature, and growth-rates on the intracellular concentrations of yeast amino-acids. Biotechnol Prog 11(4):386–392Google Scholar
  10. 10.
    De Nicola R, Hall N, Melville S, Walker G (2009) Influence of zinc on distiller’s yeast: cellular accumulation of zinc and impact on spirit congeners. J Inst Brew 115(3):265–271Google Scholar
  11. 11.
    Hjortmo S, Patring J, Jastrebova J, Andlid T (2005) Inherent biodiversity of folate content and composition in yeasts. Trends Food Sci Technol 16(6–7):311–316Google Scholar
  12. 12.
    Vieira E, Brandão T, Ferreira IMPLVO (2013) Evaluation of Brewer’s spent yeast to produce flavor enhancer nucleotides: influence of serial repitching. J Agric Food Chem 61:8724–8729Google Scholar
  13. 13.
    Alexandre H (2011) 2.45 autolysis of yeasts. Compr Biotechnol (Second Ed) 2:641–649Google Scholar
  14. 14.
    Kieliszek M, Kot AM, Bzducha-Wrobel A, Blazejak S, Gientka I, Kurcz A (2017) Biotechnological use of Candida yeasts in the food industry: a review. Fungal Biol Rev 31(4):185–198Google Scholar
  15. 15.
    Jacob FF, Hutzler M, Methner F-J (2019) Comparison of various industrially applicable disruption methods to produce yeast extract using spent yeast from top-fermenting beer production: influence on amino acid and protein content. Eur Food Res Technol 245(1):95–109Google Scholar
  16. 16.
    Ingledew WM, Sosulski FW, Magnus CA (1986) An assessment of yeast foods and their utility in brewing and enology. Am Soc Brew Chem 44(4):166–170Google Scholar
  17. 17.
    López-Solís R, Duarte-Venegas C, Meza-Candia M, Barrio-Galán R, Peña-Neira A, Medel-Marabolí M, Obreque-Slier E (2017) Great diversity among commercial inactive dry-yeast based products. Food Chem 219:282–289Google Scholar
  18. 18.
    Spearman M, Chan S, Jung V, Kowbel V, Mendoza M, Miranda V, Butler M (2016) Components of yeast (Sacchromyces cervisiae) extract as defined media additives that support the growth and productivity of CHO cells. J Biotechnol 233:129–142Google Scholar
  19. 19.
    Zhang J, Reddy J, Buckland B, Greasham R (2003) Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process. Biotechnol Bioeng 82(6):640–652Google Scholar
  20. 20.
    Research Center Weihenstephan (2018) Stammbeschreibung LeoBavaricus—TUM 68® Saccharomyces cerevisiae, obergärige Weizenbierhefe. http://www.blq-weihenstephan.de/tum-hefen/hefen-und-bakterien.html. Accessed 1 Apr 2018
  21. 21.
    Pfenninger H (1996) MEBAK Brautechnische Analysemethoden Band 3 Selbstverlag der MEBAK, FreisingGoogle Scholar
  22. 22.
    Hutzler M (2009) Entwicklung und Optimierung von Methoden zur Identifizierung und Differenzierung von getränkerelevanten Hefen. Technischen Universität, MünchenGoogle Scholar
  23. 23.
    Back W (2008) Ausgewählte Kapitel der Brauereitechnologie. Fachverlag Hans Carl GmbH, NürnbergGoogle Scholar
  24. 24.
    Biotecon Diagnostics (2018) Foodproof beer screening kit. https://www.bc-diagnostics.com/products/kits/real-time-pcr/spoilage-organisms/foodproof-beer-screening-kit/. Accessed 1 Apr 2018
  25. 25.
    Bronn WK (1996) Hefe und Hefeextrakte. In: Heiss R (ed) Lebensmitteltechnologie. Biotechnologische, chemische, mechanische, und thermische Verfahren der Lebensmittelverarbeitung. Springer, Berlin, pp 336–343Google Scholar
  26. 26.
    Jazwinski SM (1990) Preparation of extracts from yeast. Methods Enzymol 182:154–174Google Scholar
  27. 27.
    Kim KS, Yun HS (2006) Production of soluble beta-glucan from the cell wall of Saccharomyces cerevisiae. Enzyme Microbial Technol 39:496–500Google Scholar
  28. 28.
    Münch P (1999) Aromastoffe in thermisch behandelten Hefeextrakten. Verlag Dr. Hut, MünchenGoogle Scholar
  29. 29.
    Podpora B, Świderski F, Sadowska A, Piotrowska A, Rakowska R (2015) Spent Brewer’s yeast autolysates as a new and valuable component of functional food and dietary supplements. J Food Process Technol.  https://doi.org/10.4172/2157-7110.1000526 Google Scholar
  30. 30.
    Bradford MM (1976) A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  31. 31.
    Jacob F (2012) MEBAK Brautechnische Analysemethoden Würze Bier Biermischgetränke. Selbstverlag der MEBAK, Freising-WeihenstephanGoogle Scholar
  32. 32.
    Naumann C, Bassler R, Seibold R, Barth C (1976) Methodenbuch Band 3, die chemische Untersuchung von Futtermitteln. VDLUFA-Verlag, DarmstadtGoogle Scholar
  33. 33.
    Schulze U, Larsen ME, Villadsen J (1995) Determination of intracellular trehalose and glycogen in Saccharomyces cerevisiae. Anal Biochem 228(1):143–149Google Scholar
  34. 34.
    Mahmud SA, Nagahisa K, Hirasawa T, Yoshikawa K, Ashitani K, Shimizu H (2009) Effect of trehalose accumulation on response to saline stress in Saccharomyces cerevisiae. Yeast 26(1):17–30Google Scholar
  35. 35.
    Anger M (2006) Brautechnische Analysenmethoden Rohstoffe. Selbstverlag der MEBAK, Freising-WeihenstpahnGoogle Scholar
  36. 36.
    Beuth Verlag GmbH (2018) DIN-Normen. https://www.beuth.de. Accessed 1 Apr 2018
  37. 37.
    AOAC International (2018) Official methods of analysis of AOAC International. http://www.aoac.org. Accessed 1 Apr 2018
  38. 38.
    Mücke D (1957) Einführung in Mikrobiologische Bestimmungsverfahren. Quantitative Bestimmung von Aminosäuren und Vitaminen des B-Komplexes. Thieme Verlag, LeipzigGoogle Scholar
  39. 39.
    Striegel L, Chebib S, Netzel ME, Rychlik M (2018) Improved stable isotope dilution assay for dietary folates using LC-MS/MS and its application to strawberries. Front Chem 6:11–11Google Scholar
  40. 40.
    Ortiz-Julien A (2012) Method for preventing defective ageing of white wines. United States of Amercia PatentGoogle Scholar
  41. 41.
  42. 42.
    Yamada EA, Sgarbieri VC (2005) Yeast (Saccharomyces cerevisiae) protein concentrate: Preparation, chemical composition, and nutritional and functional properties. J Agric Food Chem 53(10):3931–3936Google Scholar
  43. 43.
    Amorim M, Pereira JO, Gomes D, Pereira CD, Pinheiro H, Pintado M (2016) Nutritional ingredients from spent brewer’s yeast obtained by hydrolysis and selective membrane filtration integrated in a pilot process. J Food Eng 185:42–47Google Scholar
  44. 44.
    Ihl M, Tagle MA (1974) Estimation of protein in yeast. J Sci Food Agric 25(5):461–464Google Scholar
  45. 45.
    Lei H, Zheng L, Zhao H, Zhao M (2013) Effects of worts treated with proteases on the assimilation of free amino acids and fermentation performance of lager yeast. Int J Food Microbiol 161:76–83Google Scholar
  46. 46.
    G-Biosciences (2018) Protein assays technical guide and handbook. https://info2.gbiosciences.com/complete-protein-assay-guide. Accessed 1 Apr 2018
  47. 47.
    Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kot AM (2019) Effect of selenium on lipid and amino acid metabolism in yeast cells. Biol Trace Elem Res 187:316–327Google Scholar
  48. 48.
    Chae HJ, Joo H, In MJ (2001) Utilization of brewer’s yeast cells for the production of food-grade yeast extract. Part 1: effects of different enzymatic treatments on solid and protein recovery and flavour characteristics. Biores Technol 76(3):253–258Google Scholar
  49. 49.
    Bokulich NA, Bamforth CW (eds) (2017) Brewing microbiology current research, omics and microbial ecology. Caister Academic Press, NorfolkGoogle Scholar
  50. 50.
    Annemüller G, Manger HJ (2013) Gärung und Reifung des Bieres 2. überarbeitete Auflage 2013 edn. VLB Berlin, BerlinGoogle Scholar
  51. 51.
    Higashiyama T (2002) Novel functions and applications of trehalose. Pure Appl Chem 74(7):1263–1269Google Scholar
  52. 52.
    Parrou JL, Teste MA, Francois J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: Genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiol Uk 143:1891–1900Google Scholar
  53. 53.
    Yoshikawa Y, Matsumoto K, Nagata K, Sato T (1994) Extraction of trehalose from thermally-treated bakers-yeast. Biosci Biotechnol Biochem 58(7):1226–1230Google Scholar
  54. 54.
    Jin Y, Wang M, Lin SY, Guo Y, Liu JB, Yin YG (2011) Optimization of extraction parameters for trehalose from beer waste brewing yeast treated by high-intensity pulsed electric fields (PEF). Afr J Biotechnol 10(82):19144–19152Google Scholar
  55. 55.
    Pastinen O, Nyyssola A, Pihlajaniemi V, Sipponen MH (2017) Fractionation process for the protective isolation of ergosterol and trehalose from microbial biomass. Process Biochem 58:217–223Google Scholar
  56. 56.
    Walker GM (1998) Yeast physiology and biotechnology. Wiley, ChichesterGoogle Scholar
  57. 57.
    Munoz E, Ingledew WM (1989) Effect of yeast hulls on stuck and sluggish wine fermentations—importance of the lipid component. Appl Environ Microbiol 55(6):1560–1564Google Scholar
  58. 58.
    Nguyen MT, Hendrickx M (2003) Model studies on the stability of folic acid and 5-methyltetrahydrofolic acid degradation during thermal treatment in combination with high hydrostatic pressure. J Agric Food Chem 51(11):3352–3357Google Scholar
  59. 59.
    Pinto L, Lopes M, Carvalho Filho C, Alves L, Benevides C (2013) Determinação do valor nutritivo de derivados de levedura de cervejaria (Saccharomyces spp.). Revista Brasileira de Produtos Agroindustriais 15(1):7–17Google Scholar
  60. 60.
    Halvin K, Paalme T, Nisamedtinov I (2013) Comparison of different extraction methods for simultaneous determination of B complex vitamins in nutritional yeast using LC/MS-TOF and stable isotope dilution assay. Anal Bioanal Chem 405(4):1213–1222Google Scholar
  61. 61.
    Bermudez-Aguirre D (ed) (2017) Ultrasound advances in food processing and preservation. Elsevier Science, LondonGoogle Scholar
  62. 62.
    Middelberg APJ (1995) Process-scale disruption of microorganisms. Biotechnol Adv 13(3):491–551Google Scholar
  63. 63.
    Gaudreau H, Conway J, Champagne CP (2001) Production of zinc-enriched yeast extracts. J Food Sci Technol Mysore 38(4):348–351Google Scholar
  64. 64.
    Aleksander P, Piotr A, Tadeusz T, Makarewicz M (2009) Accumulation and release of metal ions by Brewer’s yeast during successive fermentations. J Inst Brew 115(1):78–83Google Scholar
  65. 65.
    National Academies of Sciences Engineering Medicine (2011) Dietary reference intakes tables and application. http://nationalacademies.org/hmd/Activities/Nutrition/SummaryDRIs/DRI-Tables.aspx. Accessed 23 Jan 2019
  66. 66.
    Zhao J, Fleet GH (2005) Degradation of RNA during the autolysis of Saccharomyces cerevisiae produces predominantly ribonucleotides. J Ind Microbiol Biotechnol 32(9):415–423Google Scholar
  67. 67.
    Santiago LA, Mori A (1993) Antioxidant defenses of bakers-yeast against free-radicals and lipid peroxides in rat-brain. Arch Biochem Biophys 306(1):16–21Google Scholar
  68. 68.
    Vieira EF, Melo A, Ferreira IMPLVO (2017) Autolysis of intracellular content of Brewer’s spent yeast to maximize ACE-inhibitory and antioxidant activities. LWT Food Sci Technol 82:255–259Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Friedrich Felix Jacob
    • 1
    Email author
  • Lisa Striegel
    • 2
  • Michael Rychlik
    • 2
    • 3
  • Mathias Hutzler
    • 4
  • Frank-Jürgen Methner
    • 1
  1. 1.Technische Universität Berlin, Institut für Lebensmitteltechnologie und Lebensmittelchemie, Fachgebiet BrauwesenBerlinGermany
  2. 2.Technische Universität München, Lehrstuhl für Analytische LebensmittelchemieFreisingGermany
  3. 3.Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandSt LuciaAustralia
  4. 4.Forschungszentrum Weihenstephan für Brau-und Lebensmittelqualität, Technische Universität MünchenFreisingGermany

Personalised recommendations