European Food Research and Technology

, Volume 245, Issue 4, pp 873–883 | Cite as

An in-depth study of the volatile variability of chinotto (Citrus myrtifolia Raf.) induced by the extraction procedure

  • Andrea Salvo
  • Rosaria CostaEmail author
  • Ambrogina AlbergamoEmail author
  • Sara Arrigo
  • Archimede Rotondo
  • Giovanna Loredana La Torre
  • Valentina Mangano
  • Giacomo Dugo


A variety of extraction methodologies were applied to chinotto (Citrus myrtifolia) fruits from Sicily, along with sensory and chemical analyses. By gas chromatographic techniques, either in monodimensional (GC-FID, GC–MS) or in multidimensional (MDGC) fashion, it was established how the isolation procedure affected the volatile fingerprint of such fruit. In general, limonene, linalyl acetate, myrcene, β-pinene, α-pinene, (E)-β-ocimene, linalool and geranyl acetate resulted to be the predominant volatiles. However, although revealed at lower levels, other compounds, such as trans-linalool oxide, perilla alcohol, trans-limonene oxide, may be responsible for peculiar olfactory notes. Compounds such as linalool, myrcene, β-pinene, octanal, decanal, and geranyl and perillyl acetates were selectively extracted by blending plus the addition of solvents. (E)-β-Ocimene and nootkatone were considerably expressed in hand-squeezed and solvent-extracted samples, respectively. On the other hand, linalyl acetate was the most abundant compound in samples extracted by solvent. Concerning the sensory evaluations, odor characters varied depending on the oil extraction methodology. Indeed, the flowery and citrus notes were perceived in all samples by the majority of panelists; conversely, the minty attribute was the one least smelled in five out of six samples. Enantio-MDGC analysis highlighted seven chiral pairs, with the following enantiomeric ratios: (−)/(+) limonene (1.8/98.2), (−)/(+) linalyl acetate (99.4/0.6), (+)/(−) β-pinene (99.8/0.2), (−)/(+) linalool (5.5/94.5), (+)/(−) terpinen-4-ol (48.9/51.1), (−)/(+) α-pinene (22.3/77.7) and (−)/(+) α-terpineol (20.5/79.5).


Citrus myrtifolia Chirality Chinotto Extraction Sensory analysis 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.


  1. 1.
    Scordino M, Sabatino L, Belligno A, Gagliano G (2011) Flavonoids and furocoumarins distribution of unripe chinotto (Citrus × myrtifolia Rafinesque) fruit: beverage processing homogenate and juice characterization. Eur Food Res Technol 233:759–767CrossRefGoogle Scholar
  2. 2.
    Webber HJ, Batchelor LD (1943) In: University of California Press (ed) The citrus industry. vol 1. History, botany and breeding. University of California Press, BerkeleyGoogle Scholar
  3. 3.
    Chinotto: cronache da un altro bere (2018) Accessed 20 July 2018
  4. 4.
    Cautela D, Pirrello AG, Esposito C, Minasi P (2004) Composition of chinotto (Citrus myrtifolia): part I. Essenze Deriv Agrum 74:49–55Google Scholar
  5. 5.
    Cautela D, Pirrello AG, Esposito C, Siano F, Castaldo D (2004) Determination of trace levels of heavy metals in citrus juices: chinotto and red orange. Essenze Deriv Agrum 74:11–17Google Scholar
  6. 6.
    Barreca D, Bellocco E, Caristi C, Leuzzi U, Gattuso G (2010) Flavonoid composition and antioxidant activity of juices from chinotto (Citrus × myrtifolia Raf.) fruits at different ripening stages. J Agric Food Chem 58:3031–3036CrossRefGoogle Scholar
  7. 7.
    Scordino M, Sabatino L, Belligno A, Gagliano G (2011) Characterization of polyphenolic compounds in unripe chinotto (Citrus × myrtifolia) fruit by HPLC/PDA/ESI/MS-MS. Nat Prod Commun 6:1857–1862Google Scholar
  8. 8.
    Barreca D, Bellocco E, Caristi C, Leuzzi U, Gattuso G (2011) Elucidation of the flavonoid and furocoumarin composition and radical-scavenging activity of green and ripe chinotto (Citrus × myrtifolia Raf.) fruit tissues, leaves and seeds. Food Chem 129:1504–1512CrossRefGoogle Scholar
  9. 9.
    Protti M, Valle F, Poli F, Raggi MA, Mercolini L (2015) Bioactive molecules as authenticity markers of Italian chinotto (Citrus × myrtifolia) fruits and beverages. J Pharm Biomed Anal 104:75–80CrossRefGoogle Scholar
  10. 10.
    Costa R, Salvo A, Rotondo A, Bartolomeo G, Pellizzeri V, Saija E, Arrigo S, Interdonato M, Trozzi A, Dugo G (2018) Combination of separation and spectroscopic analytical techniques: application to compositional analysis of a minor citrus species. Nat Prod Res. Google Scholar
  11. 11.
    Chialva F, Doglia G (1990) Essential oil constituents of chinotto (Citrus aurantium L. var. myrtifolia Guill.). J Essent Oil Res 2:33–35CrossRefGoogle Scholar
  12. 12.
    Verzera A, Stagno d’Alcontres I, Trozzi A, Saitta M (1991) On the genuineness of citrus essential oils. Part XXXVIII. The composition of the volatile fraction of chinotto essential oil. Essenze Deriv Agrum 61:323–330Google Scholar
  13. 13.
    Salvo A, Bruno M, La Torre GL, Vadalà R, Mottese AF, Saija E, Mangano V, Casale KE, Cicero N, Dugo G (2016) Interdonato lemon from Nizza di Sicilia (Italy): chemical composition of hexane extract of lemon peel and histochemical investigation. Nat Prod Res 30:1517–1525CrossRefGoogle Scholar
  14. 14.
    Adams RP (2007) In: Allured Publishing Corporation (ed) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publishing Corporation, Carol StreamGoogle Scholar
  15. 15.
    Mondello L (2011) FFNSC 2: Flavors and fragrances of natural and synthetic compounds, mass spectral database. Wiley, HobokenGoogle Scholar
  16. 16.
    Nist WebBook (2018) National Institute of Standard and Technology. Accessed 10 July 2018
  17. 17.
    Deterre S, Rega B, Delarue J, Decloux M, Lebrun M, Giampaoli P (2012) Identification of key aroma compounds from bitter orange (Citrus aurantium L.) products: essential oil and macerate–distillate extract. Flavour Fragr J 27:77–88CrossRefGoogle Scholar
  18. 18.
    Mastello RB, Capobiango M, Chin ST, Monteiro M, Marriott PJ (2015) Identification of odour-active compounds of pasteurised orange juice using multidimensional gas chromatography techniques. Food Res Int 75:281–288CrossRefGoogle Scholar
  19. 19.
    Minh Tu NT, Onishi Y, Choi HS, Kondo Y, Bassore SM, Ukeda H, Sawamura M (2002) Characteristic odor components of Citrus sphaerocarpa Tanaka (Kabosu) cold-pressed peel oil. J Agric Food Chem 50:2908–2913CrossRefGoogle Scholar
  20. 20.
    Costa R, Albergamo A, Bua GD, Saija E, Dugo G (2017) Determination of flavor constituents in particular types of flour and derived pasta by heart-cutting multidimensional gas chromatography coupled with mass spectrometry and multiple headspace solid-phase microextraction. LWT Food Sci Technol 86:99–107CrossRefGoogle Scholar
  21. 21.
    Bua GD, Albergamo A, Annuario G, Zammuto V, Costa R, Dugo G (2017) High-throughput ICP-MS and chemometrics for exploring the major and trace element profile of the Mediterranean sepia ink. Food Anal Methods 10:1181–1190CrossRefGoogle Scholar
  22. 22.
    Albergamo A, Mottese AF, Bua GD, Caridi F, Sabatino G, Barrega L, Costa R, Dugo G (2018) Discrimination of the Sicilian prickly pear (Opuntia ficus-indica L., CV. Muscaredda) according to the provenance by testing unsupervised and supervised chemometrics. J Food Sci. Google Scholar
  23. 23.
    Albergamo A, Bua GD, Rotondo A, Bartolomeo G, Annuario G, Costa R, Dugo G (2018) Transfer of major and trace elements along the “farm-to-fork” chain of different whole grain products. J Food Comp Anal 66:212–220CrossRefGoogle Scholar
  24. 24.
    Mottese AF, Albergamo A, Bartolomeo G, Bua GD, Rando R, De Pasquale P, Saija E, Donato D, Dugo G (2018) Evaluation of fatty acids and inorganic elements by multivariate statistics for the traceability of the Sicilian Capparis spinosa L. J Food Comp Anal 72:64–66CrossRefGoogle Scholar
  25. 25.
    Murase T, Misawa K, Haramisu S, Minegishi Y, Hase T (2010) Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK. Am J Physiol Endocrinol Metab 299:E266–E275CrossRefGoogle Scholar
  26. 26.
    Haro-Guzmán L (2011) In: CRC Press (ed) Citrus oils—composition, advanced analytical techniques, contaminants, and biological activity. CRC Press, Boca RatonGoogle Scholar
  27. 27.
    Guenter Berger R (2007) Berger RG (ed) Flavours and fragrances. Chemistry, bioprocessing and sustainability. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  28. 28.
    Choi HS (2003) Character impact odorants of Citrus Hallabong [(C. unshiu Marcov × C. sinensis Osbeck) × C. reticulata Blanco] cold-pressed peel oil. J Agric Food Chem 51:2687–2692CrossRefGoogle Scholar
  29. 29.
    Sciarrone D, Costa R, Ragonese C, Tranchida PQ, Santi L, Dugo P, Dugo G, Mondello L (2011) Application of a multidimensional gc system with simultaneous mass spectrometric and FID detection to the analysis of sandalwood oil. J Chromatogr A 1218:137–142CrossRefGoogle Scholar
  30. 30.
    Dugo G, Mondello L (2011) In: CRC Press (ed) Citrus oils—composition, advanced analytical techniques, contaminants, and biological activity. CRC Press, Boca RatonGoogle Scholar
  31. 31.
    Lo Presti M, Sciarrone D, Crupi ML, Costa R, Ragusa S, Dugo G, Mondello L (2008) Evaluation of the volatile and chiral composition in Pistacia lentiscus L. essential oil. Flavour Fragr J 23:249–257CrossRefGoogle Scholar
  32. 32.
    Costa R, Zellner B, Crupi ML, De Fina MR, Valentino MR, Dugo P, Dugo G, Mondello L (2008) Gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC-O) and enantio-GC investigation on the essential oil of Tarchonanthus camphoratus L. Flavour Fragr J 23:40–48CrossRefGoogle Scholar
  33. 33.
    Liberto E, Cagliero C, Sgorbini B, Bicchi C, Sciarrone D, D’Acampora Zellner B, Mondello L, Rubiolo P (2008) Enantiomer identification in the flavour and fragrance field by “interactive” combination of linear retention indices from enantioselective gas chromatography and mass spectrometry. J Chromatogr A 1195:117–126CrossRefGoogle Scholar
  34. 34.
    Di Bella G, Naccari C, Bua GD, Rastrelli L, Lo Turco V, Potortì AG, Dugo G (2016) Mineral composition of some varieties of beans from mediterranean and tropical areas. Int J Food Sci Nutr 67:239–248CrossRefGoogle Scholar
  35. 35.
    Potortì AG, Lo Turco V, Saitta M, Bua GD, Tropea A, Dugo G, Di Bella G (2017) Chemometric analysis of minerals and trace elements in Sicilian wines from two different grape cultivars. Nat Prod Res 31:1000–1005CrossRefGoogle Scholar
  36. 36.
    Potortì AG, Di Bella G, Mottese AF, Bua GD, Fede MR, Sabatino G, Salvo A, Somma R, Dugo G, Lo Turco V (2018) Traceability of Protected Geographical Indication (PGI) Interdonato lemon pulps by chemometric analysis of the mineral composition. J Food Compos Anal 69:122–128CrossRefGoogle Scholar
  37. 37.
    Albergamo A, Rotondo A, Salvo A, Pellizzeri V, Bua GD, Maggio A, Dugo G (2017) Metabolite and mineral profiling of “Violetto di Niscemi” and “Spinoso di Menfi” globe artichokes by 1H-NMR and ICP-MS. Nat Prod Res 31:990–999CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Andrea Salvo
    • 1
    • 2
  • Rosaria Costa
    • 1
    Email author
  • Ambrogina Albergamo
    • 1
    • 2
    Email author
  • Sara Arrigo
    • 1
    • 2
  • Archimede Rotondo
    • 1
  • Giovanna Loredana La Torre
    • 1
  • Valentina Mangano
    • 1
    • 2
  • Giacomo Dugo
    • 1
    • 2
  1. 1.Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf)University of MessinaMessinaItaly
  2. 2.Science4Life s.r.l., A Spin-off of the University of MessinaMessinaItaly

Personalised recommendations