Volatile composition, foam characteristics and sensory properties of Tempranillo red sparkling wines elaborated using different techniques to obtain the base wines

  • Silvia Pérez-MagariñoEmail author
  • Marta Bueno-Herrera
  • Pedro López de la Cuesta
  • Miriam González-Lázaro
  • Leticia Martínez-Lapuente
  • Zenaida Guadalupe
  • Belén Ayestarán
Original Paper


The aim of this work was to study oenological techniques to obtain adequate base wine for red sparkling wine elaboration. Four winemaking techniques were carried out: pre-fermentative cold maceration with dry ice and delestage with premature grapes; and sugar reduction in must and partial dealcoholisation of wine with mature grapes. Their effect on oenological parameters, volatile composition, foam and sensory characteristics was valuated. Reduction of sugar content and partial dealcoholisation allow obtaining base wines with more adequate alcohol content. No differences were found between the oenological parameters during the ageing time. Pre-fermentative cold maceration and partial dealcoholisation had a greater influence on the volatile composition of the base and red sparkling wines. Oenological technique did not affect the foam instrumental parameters. Red sparkling wines from premature grapes showed higher vegetal aromas, and pre-fermentative cold maceration the best foam sensory descriptors.


Red sparkling wines Oenological techniques Volatile compounds Foam Sensory analysis 



The authors would like to thank the ‘Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria’ (INIA) for the funding provided for this study through the project RTA2012-092-C02-01 (with FEDER funds). M. G-L. thanks the Comunidad Autónoma de La Rioja and Universidad de La Rioja for her FPI-UR-CAR grant.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Compliance with ethics requirement

This article does not contain any studies with human or animals and complies with ethical requirements.


  1. 1.
    OIV (2014) In: El mercado de los vinos espumosos. International Organization of Vine and Wine. Accessed 5 Dec 2018
  2. 2.
    OIV (2017) In: Statistical Report on World Vitiviniculture 2017. International Organization of Vine and Wine. Accessed 5 Dec 2018
  3. 3.
    Pérez-Magariño S, Ortega-Heras M, Martínez-Lapuente L, Guadalupe Z, Ayestarán B (2013) Multivariate analysis for the differentiation of sparkling wines elaborated from autochthonous Spanish grape varieties: volatile compounds, amino acids and biogenic amines. Eur Food Res Technol 236:827–841CrossRefGoogle Scholar
  4. 4.
    Caliari V, Burin VM, Rosier JP, BordignonLuiz MT (2014) Aromatic profile of Brazilian sparkling wines produced with classical and innovative grape varieties. Food Res Int 62:965–973CrossRefGoogle Scholar
  5. 5.
    Olarte C, Pelegrín J, Reinares E (2017) Model of acceptance of a new type of beverage: application to natural sparkling red wine. Span J Agric Res 15:e0102. CrossRefGoogle Scholar
  6. 6.
    Gil-Muñoz R, Moreno-Pérez A, Vila-López R, Fernández-Fernández JI, Martínez-Cutillas A, Gómez-Plaza E (2009) Influence of low temperature prefermentative techniques on chromatic and phenolic characteristics of Syrah and Cabernet Sauvignon wines. Eur Food Res Technol 228:777–788CrossRefGoogle Scholar
  7. 7.
    Ortega-Heras M, Pérez-Magariño S, González-Sanjosé ML (2012) Comparative study of the use of maceration enzymes and cold pre-fermentative maceration on phenolic and anthocyanic composition and colour of a Mencía red wine. LWT - Food Sci Technol 48:1–8CrossRefGoogle Scholar
  8. 8.
    Cai J, Zhu BQ, Wang YH, Lu L, Lan YB, Reeves MJ, Duan CQ (2014) Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters. Food Chem 154:217–229CrossRefPubMedGoogle Scholar
  9. 9.
    Aleixandre-Tudó JL, Álvarez I, Lizama V, Nieuwoudt H, García MJ, Aleixandre JL, du Toit WJ (2016) Modelling phenolic and volatile composition to characterize the effects of pre-fermentative cold soaking in Tempranillo wines. LWT Food Sci Technol 66:193–200CrossRefGoogle Scholar
  10. 10.
    Álvarez I, Aleixandre JL, García J, Lizama V (2006) Impact of prefermentative maceration on the phenolic and volatile compounds in Monastrell red wines. Anal Chim Acta 563:109–115CrossRefGoogle Scholar
  11. 11.
    Puertas B, Guerrero RF, Jurado MS, Jiménez MJ, Cantos-Villar E (2008) Evaluation of alternative winemaking processes for red wine color enhancement. Food Sci Technol Int 15:21–27CrossRefGoogle Scholar
  12. 12.
    Leahy R (2000) Délestage fermentation: from bitter to better reds. Vineyard Winery Manag 26(5):101–104Google Scholar
  13. 13.
    Zamora F (2003) Elaboración y crianza del vino tinto: aspectos científicos y prácticos. AMV Editions, MadridGoogle Scholar
  14. 14.
    Zoecklein BW, Pélanne LM, Birkenmaier SS, Reed K (2009) Impact of délestage with partial seed removal. Practical Winery & Vineyard Journal, San Rafael, pp 34–52Google Scholar
  15. 15.
    García-Martín N, Pérez-Magariño S, Ortega-Heras M, González-Huerta C, Mihnea M, González-Sanjosé ML, Palacio L, Prádanos P, Hernández A (2011) Sugar reduction in white and red musts with nanofiltration membranes. Desalin Water Treat 27:167–174CrossRefGoogle Scholar
  16. 16.
    Motta S, Guaita M, Petrozziello M, Ciambotti A, Panero L, Solomita M, Bosso A (2017) Comparison of the physicochemical and volatile composition of wine fractions obtained by two different dealcoholization techniques. Food Chem 221:1–10CrossRefPubMedGoogle Scholar
  17. 17.
    Belisario-Sánchez YY, Taboada-Rodriguez A, Martín-Iniesta F, López-Gómez A (2009) Dealcoholized wines by spinning cone column distillation: phenolic compounds and antioxidant activity measured by the 1,1-diphenyl-2-picrylhydrazyl method. J Agric Food Chem 57:6770–6778CrossRefPubMedGoogle Scholar
  18. 18.
    Varavuth S, Jiraratananon R, Atchariyawut S (2009) Experimental study on dealcoholization of wine by osmotic distillation process. Sep Purif Technol 66:313–321CrossRefGoogle Scholar
  19. 19.
    Bogianchini M, Cerezo AB, Gomis A, López F, García-Parrilla MC (2011) Stability, antioxidant activity and phenolic composition of commercial and reverse osmosis obtained dealcoholised wines. LWT Food Sci Technol 44:1369–1375CrossRefGoogle Scholar
  20. 20.
    García-Martín N, Pérez-Magariño S, Ortega-Heras M, González-Huerta C, Mihnea M, González-Sanjosé ML, Palacio L, Prádanos P, Hernández A (2010) Sugar reduction in musts with nanofiltration membranes to obtain low alcohol-content wines. Sep Purif Technol 76:158–170CrossRefGoogle Scholar
  21. 21.
    Salgado C, Palacio L, Prádanos P, Hernández A, González-Huerta C, Pérez-Magariño S (2015) Comparative study of red grape must nanofiltration: laboratory and pilot plant scales. Food Bioprod Process 94:610–620CrossRefGoogle Scholar
  22. 22.
    OIV (1990) Compendium of international methods of analysis of wine and musts. Organization Internationale de la Vigne et du Vin, ParisGoogle Scholar
  23. 23.
    Glories Y (1984) La couleur des vins rouges. 2_eme partie: mesure, origine et interpretation. Connais Vigne Vin 18:253–271Google Scholar
  24. 24.
    Paronetto L (1977) Polifenoli e tecnica enologica. Selepress, MilanGoogle Scholar
  25. 25.
    Rodríguez-Bencomo JJ, Ortega-Heras M, Pérez-Magariño S (2010) Effect of alternative techniques to ageing on lees and use of non-toasted oak chips in alcoholic fermentation on the aromatic composition of a red wine. Eur Food Res Technol 230:485–496CrossRefGoogle Scholar
  26. 26.
    Maujean A, Poinsaut P, Dantan H, Brissonnet F. Cossiez E (1990) Etude de la tenue et de la qualité de mousse des vins effervescents. II. Mise au point d’une technique de mesure de la moussabilitéde la tenue et de la stabilitéde la mousse des vins effervescents. Bull l’OIV 63:405–427Google Scholar
  27. 27.
    Pérez-Magariño S, Martínez-Lapuente L, Bueno-Herrera M, Ortega-Heras M, Guadalupe Z, Ayestarán B (2015) Use of commercial dry yeast products rich in mannoproteins for white and rosé sparkling wine elaboration. J Agric Food Chem 63:5670–5681CrossRefPubMedGoogle Scholar
  28. 28.
    González-Sanjosé ML, Ortega-Heras M, Pérez-Magariño S (2008) Micro-oxygenation treatment and sensory properties of young red wines. Food Sci Technol Int 14:123–130CrossRefGoogle Scholar
  29. 29.
    Gallart M, Tomás X, Suberbiola G, López-Tamames E, Buxaderas S (2004) Relationship between foam parameters obtained by sparging method and sensory evaluation of sparkling wines. J Sci Food Agric 84:127–133CrossRefGoogle Scholar
  30. 30.
    Clarke RJ, Bakker J (2004) Grape varieties and growing regions. In: Clarke RJ, Bakker J (eds) Wine flavour chemistry. Blackwell Publishing Ltd, OxfordCrossRefGoogle Scholar
  31. 31.
    Mihnea M, González-Sanjosé ML, Ortega-Heras M, Pérez-Magariño S, García-Martín N, Palacio L, Prádanos P, Hernández A (2012) Impact of must sugar reduction by membrane applications on volatile composition of Verdejo wines. J Agric Food Chem 60:7050–7063CrossRefPubMedGoogle Scholar
  32. 32.
    Francis IL, Newton JL (2005) Determining wine aroma from compositional data. Austr J Grape Wine Res 11:114–126CrossRefGoogle Scholar
  33. 33.
    Escudero A, Campo E, Fariña L, Cacho J, Ferreira V (2017) Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. J Agric Food Chem 55:4501–4510CrossRefGoogle Scholar
  34. 34.
    Sánchez-Palomo E, Gómez García-Carpintero E, Gómez-Gallego MA, González-Viñas MA (2012) The aroma of rojal red wines from La Mancha region—Determinations of key odorants. In: Salih B (ed) Gas chromatography in plant science, wine technology, toxicology and some specific applications. Intech, Croatia, pp 147–170Google Scholar
  35. 35.
    Antalick G, Suklje K, Blackman JW, Meeks C, Deloire A, Schmidtke LM (2015) Influence of grape composition on red wine ester profile: comparison between Cabernet Sauvignon and Shiraz cultivars from Australian warm climate. J Agric Food Chem 63:4664–4672CrossRefPubMedGoogle Scholar
  36. 36.
    Bayonove C, Baumes R, Crouzet J, Günata Z (2003) Aromas. In: Enología: fundamentos científicos y tecnológicos. Mundi prensa-AMV Editions, MadridGoogle Scholar
  37. 37.
    Loscos N, Hernández-Orte P, Cacho JF, Ferreira V (2007) Release and formation of varietal aroma compounds during alcoholic fermentation from nonfloral grape odorless flavor precursors fractions. J Agric Food Chem 55:6674–6684CrossRefPubMedGoogle Scholar
  38. 38.
    Ugliano M, Henschke PA (2009) In: Moreno-Arribas MV, Polo MC (eds) Wine chemistry and biochemistry. Springer, New York, USAGoogle Scholar
  39. 39.
    Longo R, Blackman JW, Torley PJ, Rogiers SY, Schmidtke LM (2017) Changes in volatile composition and sensory attributes of wines during alcohol content reduction. J Sci Food Agric 97:8–16CrossRefPubMedGoogle Scholar
  40. 40.
    Pérez-Magariño S, Ortega-Heras M, Rodríguez-Bencomo JJ, Cano-Mozo E, González-Huerta C, Herrera P (2008) Estudio de desalcoholización parcial en vinos blancos y tintos. Bull l’OIV 81(nº 932–934):541–549Google Scholar
  41. 41.
    Bindon K, Varela C, Kennedy J, Holt H, Herderich M (2013) Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon. 1. Grape and wine chemistry. Food Chem 138:1696–1705CrossRefPubMedGoogle Scholar
  42. 42.
    Riu-Aumatell M, Bosch-Fusté J, López-Tamames E, Buxaderas S (2006) Development of volatile compounds of cava (Spanish sparkling wine) during long ageing time in contact with lees. Food Chem 95:237–242CrossRefGoogle Scholar
  43. 43.
    Torrens J, Riu-Aumatell M, Vichi S, López-Tamames E, Buxaderas S (2010) Assessment of volatile and sensory profiles between base and sparkling wines. J Agric Food Chem 58:2455–2461CrossRefPubMedGoogle Scholar
  44. 44.
    Pérez-Magariño S, Ortega-Heras M, Bueno-Herrera M, Martínez-Lapuente L, Guadalupe Z, Ayestarán B (2015) Grape variety, aging on lees and aging in bottle after disgorging influence on volatile composition and foamability of sparkling wines. LWT Food Sci Technol 61:47–55CrossRefGoogle Scholar
  45. 45.
    Esteruelas M, González-Royo E, Kontoudakis N, Orte A, Cantos A, Canals JM, Zamora F (2015) Influence of grape maturity on the foaming properties of base wines and sparkling wines (Cava). J Sci Food Agric 95:2071–2080CrossRefPubMedGoogle Scholar
  46. 46.
    Girbau-Solà T, López-Barajas M, López-Tamames E, Buxaderas S (2002) Foam aptitude of Trepat and Monastrell red varieties in Cava elaboration. 2. Second fermentation and aging. J Agric Food Chem 50:5600–5604CrossRefPubMedGoogle Scholar
  47. 47.
    Vanrell G, Canals R, Esteruelas M, Fort F, Canals JM, Zamora F (2007) Influence of the use of bentonite as a riddling agent on foam quality and protein fraction of sparkling wines (Cava). Food Chem 104:148–155CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Silvia Pérez-Magariño
    • 1
    Email author
  • Marta Bueno-Herrera
    • 1
  • Pedro López de la Cuesta
    • 1
  • Miriam González-Lázaro
    • 2
  • Leticia Martínez-Lapuente
    • 2
  • Zenaida Guadalupe
    • 2
  • Belén Ayestarán
    • 2
  1. 1.Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y GanaderíaValladolidSpain
  2. 2.Instituto de las Ciencias de la Vid y del Vino (Universidad de la Rioja, CSIC y Gobierno de la Rioja)LogroñoSpain

Personalised recommendations