Advertisement

European Food Research and Technology

, Volume 245, Issue 3, pp 667–675 | Cite as

Vinegar production to valorise Citrus bergamia by-products

  • Angelo M. Giuffrè
  • Clotilde Zappia
  • Marco Capocasale
  • Marco Poiana
  • Rossana Sidari
  • Leonardo Di Donna
  • Lucia Bartella
  • Giovanni Sindona
  • Giuseppe Corradini
  • Paolo Giudici
  • Andrea CaridiEmail author
Original Paper
  • 48 Downloads

Abstract

In the bergamot (Citrus bergamia) processing cycle, peel and juice are the main by-products. Considering their high content in bioactive and aromatic compounds, the aim of this study was to valorise them in the vinegar industry. The proposal constitutes a model system for the global citrus industry, to improve the commercial value of the citrus wastes. The bioconversion of four juice combinations (based on bergamot fruit peel or juice) in eight wines and, after random choice, in four vinegars was tested. The chemical composition of wines and vinegars was determined, detecting a high permanence of a majority of the compounds of interest. The sensory analysis of the four vinegars before and after an oxidation treatment was performed obtaining good performances.

Keywords

By-products Citrus bergamia Model system Vinegars 

Notes

Acknowledgements

We express our sincere gratitude to Prof Ferdinando Delfino and Dr Demetrio Melissari for their contribution concerning study conception and orchestration of the experiments. We express our sincere gratitude to Dr Nava Domenico, Dr Giuliano Delfino, and the staff of the Citrus Juices Company for their collaboration in the realization of the experiments.

Funding

The study was not specifically funded.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Anwar F, Naseer R, Bhanger MI, Ashraf S, Talpur FN, Aladedunye FA (2008) Physico-chemical characteristics of citrus seeds and seed oils from Pakistan. J Am Oil Chem Soc 85:321–330CrossRefGoogle Scholar
  2. 2.
    Coll MD, Coll L, Laencina J, Tomás-Barberán FA (1998) Recovery of flavanones from wastes of industrially processed lemons. Z Lebensm Unters Forsch A 206:404–407CrossRefGoogle Scholar
  3. 3.
    Martín MA, Siles JA, Chica AF, Martín A (2010) Biomethanization of orange peel waste. Bioresour Technol 101:8993–8999CrossRefGoogle Scholar
  4. 4.
    Rezzadori K, Benedetti S, Amante ER (2012) Proposals for the residues recovery: orange waste as raw material for new products. Food Bioprod Process 90:606–614CrossRefGoogle Scholar
  5. 5.
    Ademosun AO, Oboh G, Passamonti S, Tramer F, Ziberna L, Boligon AA, Athayde ML (2016) Phenolic composition of orange peels and modulation of redox status and matrix metalloproteinase activities in primary (Caco-2) and metastatic (LoVo and LoVo/ADR) colon cancer cells. Eur Food Res Technol 242:1949–1959CrossRefGoogle Scholar
  6. 6.
    Sharma K, Mahato N, Cho MH, Lee YR (2017) Converting citrus wastes into value-added products: economic and environmentally friendly approaches. Nutrition 34:29–46CrossRefGoogle Scholar
  7. 7.
    Papoutsis K, Pristijono P, Golding JB, Stathopoulos CE, Bowyer MC, Scarlett CJ, Vuong QV (2018) Optimizing a sustainable ultrasound-assisted extraction method for the recovery of polyphenols from lemon by-products: comparison with hot water and organic solvent extractions. Eur Food Res Technol 244:1353–1365CrossRefGoogle Scholar
  8. 8.
    Gargouri B, Ammar S, Verardo V, Besbes S, Segura-Carretero A, Bouaziz M (2017) RP-HPLC-DAD-ESI-TOF-MS based strategy for new insights into the qualitative and quantitative phenolic profile in Tunisian Industrial Citrus limon by-product and their antioxidant activity. Eur Food Res Technol 243:2011–2024CrossRefGoogle Scholar
  9. 9.
    Loizzo MR, Leporini M, Sicari V, Falco T, Pellicanò TM, Tundis R (2018) Investigating the in vitro hypoglycaemic and antioxidant properties of Citrus × clementina Hort. Juice. Eur Food Res Technol 244:523–534CrossRefGoogle Scholar
  10. 10.
    Pernice R, Borriello G, Ferracane R, Borrelli RC, Cennamo F, Ritieni A (2009) Bergamot: a source of natural antioxidants for functionalized fruit juices. Food Chem 112:545–550CrossRefGoogle Scholar
  11. 11.
    Gabriele M, Frassinetti S, Caltavuturo L, Montero L, Dinelli G, Longo V, Di Gioia D, Pucci L (2017) Citrus bergamia powder: antioxidant, antimicrobial and anti-inflammatory properties. J Funct Foods 31:255–265CrossRefGoogle Scholar
  12. 12.
    Spigoni V, Mena P, Fantuzzi F, Tassotti M, Brighenti F, Bonadonna RC, Del Rio D, Dei Cas A (2017) Bioavailability of bergamot (Citrus bergamia) flavanones and biological activity of their circulating metabolites in human pro-angiogenic cells. Nutrients 9:1328.  https://doi.org/10.3390/nu9121328 CrossRefGoogle Scholar
  13. 13.
    Di Donna L, De Luca G, Mazzotti F, Napoli A, Salerno R, Taverna D, Sindona G (2009) Statin-like principles of bergamot fruit: isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J Nat Prod 72:1352–1354CrossRefGoogle Scholar
  14. 14.
    Di Donna L, Gallucci G, Malaj N, Romano E, Tagarelli A, Sindona G (2011) Recycling of industrial essential oil waste: brutieridin and melitidin, two anticholesterolemic active principles from bergamot albedo. Food Chem 125:438–441CrossRefGoogle Scholar
  15. 15.
    Cai Y, Xing G, Shen T, Zhang S, Rao J, Shi R (2017) Effects of 12-week supplementation of Citrus bergamia extracts-based formulation CitriCholess on cholesterol and body weight in older adults with dyslipidemia: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis 16:251.  https://doi.org/10.1186/s12944-017-0640-1 CrossRefGoogle Scholar
  16. 16.
    Fiorillo M, Peiris-Pagès M, Sanchez-Alvarez R, Bartella L, Di Donna L, Dolce V, Sindona G, Sotgia F, Cappello AR, Lisanti MP (2018) Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signaling and mitochondrial metabolism. BBA Bioenerg.  https://doi.org/10.1016/j.bbabio.2018.03.018 Google Scholar
  17. 17.
    Caridi A, Manganaro R (1996) Prove di produzione di aceti aromatici da succo di bergamotto. Essenze Derivati Agrumari 66:376–388Google Scholar
  18. 18.
    Caridi A, Sidari R, Di Donna L, Sindona G (2012) Alcoholic fermentation of bergamot juice does not modify its anticholesterolemic compounds. In: 13th International congress on yeasts. HP87M, Madison, p 300Google Scholar
  19. 19.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolourisation assay. Free Radic Biol Med 26:1231–1237CrossRefGoogle Scholar
  20. 20.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30CrossRefGoogle Scholar
  21. 21.
    Cirlini M, Caligiani A, Palla L, Palla G (2011) HS-SPME/GC-MS and chemometrics for the classification of balsamic vinegars of Modena of different maturation and ageing. Food Chem 124:1678–1683CrossRefGoogle Scholar
  22. 22.
    Mei-Ling W, Jih-Terng W, Youk-Meng C (2004) Simultaneous quantification of methanol and ethanol in alcoholic beverage using a rapid gas chromatographic method coupling with dual internal standards. Food Chem 86:609–615CrossRefGoogle Scholar
  23. 23.
    Liang N, Kitts DD (2016) Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8:16.  https://doi.org/10.3390/nu8010016 CrossRefGoogle Scholar
  24. 24.
    Corder R, Mullen W, Khan NQ, Marks SC, Wood EG, Carrier MJ, Crozier A (2006) Red wine procyanidins and vascular health. Nature 444:566CrossRefGoogle Scholar
  25. 25.
    Wu Q, Li S, Xiao J, Sui Y, Xie B, Sun Z (2017) Analysis of distribution and pharmacokinetics of litchi pericarp procyanidins in rat plasma and organs by using liquid chromatography–tandem mass spectrometry. Eur Food Res Technol 243:167–176CrossRefGoogle Scholar
  26. 26.
    Stojković D, Petrović J, Soković M, Glamočlija J, Kukić-Marković J, Petrović S (2013) In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J Sci Food Agric 93:3205–3208CrossRefGoogle Scholar
  27. 27.
    Miyake Y, Suzuki E, Ohya S, Fukumoto S, Hiramitsu M, Sakaida K, Osawa T, Furuichi Y (2006) Lipid-lowering effect of eriocitrin, the main flavonoid in lemon fruit, in rats on a high-fat and high-cholesterol diet. J Food Sci 71:S633–S637CrossRefGoogle Scholar
  28. 28.
    Aslan E, Guler C, Adem S (2016) In vitro effects of some flavonoids and phenolic acids on human pyruvate kinase isoenzyme M2. J Enzyme Inhib Med Chem 31:314–317CrossRefGoogle Scholar
  29. 29.
    Gürsul C, Akdemir FNE, Akkoyun T, Can İ, Gül M, Gülçin İ (2016) Protective effect of naringin on experimental hind limb ischemia/reperfusion injury in rats. J Enzyme Inhib Med Chem 31:56–61CrossRefGoogle Scholar
  30. 30.
    Ahmadi A, Shadboorestan A (2016) Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr Cancer 68:29–39CrossRefGoogle Scholar
  31. 31.
    Gong N, Zhang B, Yang D, Gao Z, Du G, Lu Y (2015) Development of new reference material neohesperidin for quality control of dietary supplements. J Sci Food Agric 95:1885–1891CrossRefGoogle Scholar
  32. 32.
    Giuffrè AM, Zappia C, Capocasale M (2017) Physico-chemical stability of blood orange juice during frozen storage. Int J Food Prop 20:1930–1943.  https://doi.org/10.1080/10942912.2017.1359184 Google Scholar
  33. 33.
    Fadda C, Fenu PAM, Usai G, Del Caro A, Diez YM, Sanguinetti AM, Piga A (2015) Antioxidant activity and sensory changes of strawberry tree fruits during cold storage and shelf life. Czech J Food Sci 33:531–536CrossRefGoogle Scholar
  34. 34.
    Priftis A, Stagos D, Konstantinopoulos K, Tsitsimpikou C, Spandidos DA, Tsatsakis AM, Tsatsazarakis MN, Kouretas D (2015) Comparison of antioxidant activity between green and roasted coffee beans using molecular methods. Mol Med Rep 12:7293–7302CrossRefGoogle Scholar
  35. 35.
    Andreu L, Nuncio-Jáuregui N, Carbonell-Barrachina ÁA, Legua P, Hernández F (2018) Antioxidant properties and chemical characterization of Spanish Opuntia ficus-indica Mill. cladodes and fruits. J Sci Food Agr 98:1566–1573CrossRefGoogle Scholar
  36. 36.
    Szychowski PJ, Lech K, Sendra-Nadal E, Hernández F, Figiel A, Wojdyło A, Carbonell-Barrachina ÁA (2018) Kinetics, biocompounds, antioxidant activity, and sensory attributes of quinces as affected by drying method. Food Chem 255:157–164CrossRefGoogle Scholar
  37. 37.
    Giuffrè AM, Tellah S, Capocasale M, Zappia C, Latati M, Badiani M, Ounane SM (2016) Seed oil from ten Algerian peanut landraces for edible use and biodiesel production. J Oleo Sci 65:9–20.  https://doi.org/10.5650/jos.ess15199 CrossRefGoogle Scholar
  38. 38.
    Giuffrè AM, Zappia C, Capocasale M (2017) Tomato seed oil for edible use: cold break, hot break and harvest year effects. J Food Process Pres 41:e13309.  https://doi.org/10.1111/jfpp.13309 CrossRefGoogle Scholar
  39. 39.
    Giuffrè AM, Caracciolo M, Zappia C, Capocasale M, Poiana M (2018) Effect of heating on chemical parameters of extra virgin olive oil, pomace olive oil, soybean oil and palm oil. Ital J Food Sci 30:715–739. https://doi.org/10.14674/IJFS-1269 Google Scholar
  40. 40.
    Suh KS, Chon S, Choi EM (2017) Limonene attenuates methylglyoxal-induced dysfunction in MC3T3-E1 osteoblastic cells. Food Agric Immunol 28:1256–1268CrossRefGoogle Scholar
  41. 41.
    Gunaseelan S, Balupillai A, Govindasamy K, Ramasamy K, Muthusamy G, Shanmugam M, Thangaiyan R, Robert BM, Nagarajan RP, Ponniresan VK, Rathinaraj P (2017) Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells. PLoS One 12(5):e0176699.  https://doi.org/10.1371/journal.pone.0176699 CrossRefGoogle Scholar
  42. 42.
    Held S, Schieberle P, Somoza V (2007) Characterization of α-terpineol as an anti-inflammatory component of orange juice by in vitro studies using oral buccal cells. J Agric Food Chem 55:8040–8046CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Angelo M. Giuffrè
    • 1
  • Clotilde Zappia
    • 1
  • Marco Capocasale
    • 1
  • Marco Poiana
    • 1
  • Rossana Sidari
    • 1
  • Leonardo Di Donna
    • 2
  • Lucia Bartella
    • 2
  • Giovanni Sindona
    • 2
  • Giuseppe Corradini
    • 3
  • Paolo Giudici
    • 3
  • Andrea Caridi
    • 1
    Email author
  1. 1.Department of AgrariaMediterranea University of Reggio CalabriaReggio CalabriaItaly
  2. 2.Department of Chemistry and Chemical Technologies-CTCUniversity of CalabriaArcavacata di RendeItaly
  3. 3.Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly

Personalised recommendations