Skip to main content

Advertisement

Log in

Processing effects on antioxidant, glucosinolate, and sulforaphane contents in broccoli and red cabbage

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the effects of three home cooking methods traditionally used all around the world (boiling, steaming and microwaving) in two vegetables: broccoli and red cabbage. Their effects on phytochemical content (i.e., polyphenols, ascorbic acid, anthocyanins, glucosinolates, and sulforaphane) and on total antioxidant capacity were investigated. Steaming and microwaving were explored to understand the effect of cooking time and/or cooking power. Nutrient and health-promoting compounds in broccoli and red cabbage are significantly affected by domestic cooking. The boiling seems to result in a very significant loss of nutritional compounds by leaching in cooking water. However, steaming and microwaving allowed the preservation of the higher quantities of bioactive compounds such as antioxidant compounds and glucosinolates. Microwave cooking significantly influenced the concentrations of bioactive compounds such as ascorbic acid, anthocyanins and sulforaphane. Sulforaphane content increased four or six times during the first minute of microwaving in the two vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Francisco M, Moreno DA, Cartea ME, Ferreres F, Garcia-Viguera C, Velasco P (2009) Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetables Brassica rapa. J Chromatogr A 1216:6611–6619

    Article  CAS  Google Scholar 

  2. Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45

    Article  CAS  Google Scholar 

  3. Dias JS (2012) Nutritional quality and health benefits of vegetables: a review. Food Nutr Sci 3:1354–13744

    Google Scholar 

  4. Veeranki O, Bhattacharya A, Tang L, Marshall J, Zhang Y (2015) Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer. Curr Pharmacol Rep 1(4):272–282

    Article  CAS  Google Scholar 

  5. Duchnowicz P, Bors M, Podsędek A, Koter-Michalak M, Broncel M (2012) Effect of polyphenols extracts from Brassica vegetables on erythrocyte membranes (in vitro study). Environ Toxicol Pharmacol 34:783–790

    Article  CAS  Google Scholar 

  6. Armah CN, Derdemezis C, Traka MH, Dainty JR, Doleman JF, Saha S, Leung W, Potter JF, Lovegrove JA, Mithen RF (2015) Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: evidence from randomized controlled trials. Mol Nutr Food Res 59:918–926

    Article  CAS  Google Scholar 

  7. Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetables crops of Brassica oleracea. J Agric Food Chem 47:1541–1548

    Article  CAS  Google Scholar 

  8. Fimognari C, Hrelia P (2007) Sulforaphane as a promising molecule for fighting cancer. Mutat Res 635:90–104

    Article  CAS  Google Scholar 

  9. De Figueiredo SM, Binda NS, Nogueira-Machado JA, Vieira-Filho SA, Caligiorne RB (2015) The antioxidant properties of organosulfur compounds (Sulforaphane). Recent Pat Endocr Metab Immune Drug Discov 9:24–39

    Article  Google Scholar 

  10. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–95611

    Article  CAS  Google Scholar 

  11. Manach C, Scalbert A, Morand C, Rémésy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 78:727–747

    Article  Google Scholar 

  12. Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, Mena P, Del Rio D, Crozier A (2014) Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 88:1803–1853

    Article  CAS  Google Scholar 

  13. Zhang D, Hamauzu Y (2004) Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem 88:503–509

    Article  CAS  Google Scholar 

  14. Wachtel-Gabor S, Wong KW, Benzie IFF (2008) The effect of cooking on Brassica vegetables. Food Chem 110:706–710

    Article  Google Scholar 

  15. Jones RB, Frisina CL, Winkler S, Imsic M, Tomkins RB (2010) Cooking method significantly effects glucosinolate content and sulforaphane production in broccoli flowers. Food Chem 123:237–242

    Article  CAS  Google Scholar 

  16. Zhong X, Dolan KD, Almenar E (2015) Effect of steamtable bag microwaving versus traditional cooking methods on nutritional preservation and physical properties of frozen vegetables: a case study broccoli (Brassica oleracea). Innov Food Sci Emerg Technol 31:116–122

    Article  CAS  Google Scholar 

  17. Song L, Thornalley PJ (2007) Effect of storage, processing and cooking content of Brassica vegetables. Food Chem Toxicol 45:216–224

    Article  CAS  Google Scholar 

  18. Fabbri ADT, Crosby GA (2016) A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. Int J Gastron Food Sci 3:2–11

    Article  Google Scholar 

  19. Pellegrini N, Chiavaro E, Gardana C, Mazzeo T, Contino D, Gallo M, Riso P, Fogliano V, Porrini M (2010) Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen Brassica vegetables. J Agric Food Chem 58:4310–4321

    Article  CAS  Google Scholar 

  20. Murador DC, Mercadante AZ, de Rosso VV (2016) Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage. Food Chem 196:1101–1107

    Article  CAS  Google Scholar 

  21. Vallejo F, Tomás-Barberán FA, Garciá-Viguera C (2002) Glucosinolates and vitamin C content in edible parts of Broccoli florets after domestic cooking. Eur Food Res Technol 215:310–316

    Article  CAS  Google Scholar 

  22. Verkerk R, Dekker M (2004) Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments. J Agric Food Chem 52:7318–7323

    Article  CAS  Google Scholar 

  23. Tabart J, Kevers C, Sipel A, Pincemail J, Defraigne JO, Dommes J (2007) Optimization of extraction of phenolics and antioxidants from black currant leaves and buds and of stability during storage. Food Chem 105:1268–1275

    Article  CAS  Google Scholar 

  24. Mihalache-Arion C, Tabart J, Kevers C, Niculaua M, Filimon R, Beceanu D, Dommes J (2014) Antioxidant potential of different plum cultivars during storage. Food Chem 146:485–491

    Article  CAS  Google Scholar 

  25. Awika J, Rooney L, Waniska R (2004) Anthocyanins from black currant sorghum and their antioxidant properties. Food Chem 90:293–30131

    Article  Google Scholar 

  26. Nielsen I, Haren G, Magnussen E, Dragset L, Ramussen S (2003) Quantification of anthocyanins in commercial blackcurrant juices by simple high-performance liquid chromatography, investigation of their pH stability and antioxidative potency. J Agric Food Chem 51:5861–5866

    Article  CAS  Google Scholar 

  27. Gallaher C, Gallaher D, Peterson S (2012) Development and validation of a spectrophotometric method for quantification of total glucosinolates. J Agric Food Chem 60:1358–1362

    Article  CAS  Google Scholar 

  28. Vakumar G, Aliboni A, Bachetta L (2007) HPLC screening of anti-cancer sulforaphane from important European Brassica species. Food Chem 104:1761–1765

    Article  Google Scholar 

  29. Liang H, Yuan Q, Dong H, Liu Y (2006) Determination of sulforaphane in broccoli and cabbage by high-performance liquid chromatography. J Food Compos Anal 19:473–476

    Article  CAS  Google Scholar 

  30. Volden J, Borge GIA, Bengtsson GB, Hansen M, Thygesen IE, Wicklund T (2008) Effect of thermal treatment on glucosinolates and antioxidant-related parameters in red cabbage (Brassica oleracea L. ssp capitate f. rubra). Food Chem 109:595–605

    Article  CAS  Google Scholar 

  31. Faller ALK, Fialho E (2009) The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Res Int 42:210–215

    Article  CAS  Google Scholar 

  32. Roy MK, Juneja LR, Isobe S, Tsushida T (2009) Steam processes broccoli (Brassica oleracea) has higher antioxidant activity in chemical and cellular assay systems. Food Chem 114:263–269

    Article  CAS  Google Scholar 

  33. Ramos dos Reis LC, de Oliveira VR, Hagen MEK, Jabonski A, Flôres SH, de Oliveira Rios A (2015) Carotenoids, flavonoids, chlorophylls, phenolic compounds and antioxidant activity in fresh and cooked broccoli (Brassicz oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1). LWT Food Sci Technol 63:177–183

    Article  Google Scholar 

  34. Xu F, Zheng Y, Yang Z, Cao S, Shao X, Wang H (2014) Domestic cooking methods affect the nutritional quality of red cabbage. Food Chem 161:162–167

    Article  CAS  Google Scholar 

  35. Jiménez-Monreal AM, García-Diz L, Martínez-Tomé M, Mariscal M, Murcia MA (2009) Influence of cooking methods on antioxidant activity of vegetables. J Food Sci 74:H97–H103

    Article  Google Scholar 

  36. López-Berenguer C, Carvajal M, Moreno DA, García-Viguera C (2007) Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences. J Agric Food Chem 55:10001–10007

    Article  Google Scholar 

  37. Oerlemans C, Barett DM, Bosh Suades C, Verkerk R, Dekker M (2006) Thermal degradation of glucosinoates in red cabbage. Food Chem 95:19–29

    Article  CAS  Google Scholar 

  38. Miglio C, Chiavaro E, Visconti A, Fogliano V, Pellegrini N (2008) Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J Agric Food Chem 56:139–147

    Article  CAS  Google Scholar 

  39. Yuan G, Yuan J, Wang Q (2009) Effects of different cooking methods on health-promoting compounds of broccoli. J Zhejiang Univ Sci B 10:580–588

    Article  Google Scholar 

  40. Howard LA, Wong AD, Perry AK, Klein BP (1999) β-carotene and ascorbic acid retention in fresh and processed vegetables. J Food Sci 64:929–936

    Article  CAS  Google Scholar 

  41. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2006) Changes in glucosinolates, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations. J Agric Food Chem 54:7628–7634

    Article  CAS  Google Scholar 

  42. Hanschen FS, Kühn C, Nickel M, Rohn S, Dekker M (2018) Leaching and degradation kinetics of glucosinolates during boiling of Brassica oleracea vegetables and the formation of their breakdown products. Food Chem 263:240–250

    Article  CAS  Google Scholar 

  43. Matusheski N, Juvik JA, Jeffrey EH (2004) Heating decreases epithiospecifer protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65:1273–1281

    Article  CAS  Google Scholar 

  44. Barba FJ, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, Koubaa M (2016) Bioavailability of glucosinolates and their breakdown products: impact of processing. Front Nutr 3:1–11

    Article  Google Scholar 

  45. Herr I, Büchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:377–383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.T. gratefully acknowledges the support of CEDEVIT A.S.B.L (Liège), the restoration service of the CHU of Liège, and all students that have worked on this subject: Borja GARNELO GÓMEZ, Maitane TELLO LANCHO, and Elisabeth ROUCHET.

Funding

The authors certify that no funding has been received for the conduct of the study and/or preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Tabart.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabart, J., Pincemail, J., Kevers, C. et al. Processing effects on antioxidant, glucosinolate, and sulforaphane contents in broccoli and red cabbage. Eur Food Res Technol 244, 2085–2094 (2018). https://doi.org/10.1007/s00217-018-3126-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3126-0

Keywords

Navigation