Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Headspace gas chromatography for the determination of volatile methylsiloxanes in personal care products

  • 43 Accesses

Abstract

Most of the reported methods for the analysis of volatile methylsiloxanes focus on their environmental fate or possible health effects, aiming at trace level analysis by using direct injection gas chromatography. However, system contamination as carry over and side reactions at the injector are commonly reported in those cases. In this article, we explore the use of headspace gas chromatography combined with the total vaporization technique as an alternative to avoid such issues for the analysis of linear (L2–L5) and cyclic (D3–D5) volatile methylsiloxanes. The proposed method showed good linearity with R2 values higher than 0.9961 and no significant contribution (α = 0.05) of the intercept. The limit of detection was always below 0.11 μg/vial (0.0025% m/m). Finally, the method was applied to real samples like an adhesive remover, hair oil, shampoo, and cream. After simple sample pretreatment, recoveries higher than 86% were achieved.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Rücker C, Kümmerer K. Environmental chemistry of organosiloxanes. Chem Rev. 2015;115:466–524. https://doi.org/10.1021/cr500319v.

  2. 2.

    Meeks RG, Stump DG, Siddiqui WH, Holson JF, Plotzke KP, Reynolds VL. An inhalation reproductive toxicity study of octamethylcyclotetrasiloxane (D4) in female rats using multiple and single day exposure regimens. Reprod Toxicol. 2007;23:192–201. https://doi.org/10.1016/j.reprotox.2006.12.005.

  3. 3.

    Quinn AL, Dalu A, Meeker L, Jean PA, Meeks RG, Crissman JW, et al. Effects of octamethylcyclotetrasiloxane (D4) on the luteinizing hormone (LH) surge and levels of various reproductive hormones in female Sprague–Dawley rats. Reprod Toxicol. 2007;23:532–40. https://doi.org/10.1016/j.reprotox.2007.02.005.

  4. 4.

    Franzen A, Greene T, Van Landingham C, Gentry R. Toxicology of octamethylcyclotetrasiloxane (D4). Toxicol Lett. 2017;279:2–22. https://doi.org/10.1016/j.toxlet.2017.06.007.

  5. 5.

    Mojsiewicz-Pienkowska K. Safety and toxicity aspects of polysiloxanes (silicones) applications. In: Tiwari A, Soucek MD, editors. Concise encylopedia of high performance silicones. 1st ed. Hoboken: WILEY-Scrivener Publishing LLC; 2014. p. 243–52.

  6. 6.

    Mojsiewicz-Pieńkowska K, Krenczkowska D. Evolution of consciousness of exposure to siloxanes - review of publications. Chemosphere. 2018;191:204–17. https://doi.org/10.1016/j.chemosphere.2017.10.045.

  7. 7.

    Bridges J, Solomon KR. Quantitative weight-of-evidence analysis of the persistence, bioaccumulation, toxicity, and potential for long-range transport of the cyclic volatile methyl siloxanes. J Toxicol Environ Health Part B. 2016;19:345–79. https://doi.org/10.1080/10937404.2016.1200505.

  8. 8.

    Tran TM, Hoang AQ, Le ST, Minh TB, Kannan K. A review of contamination status, emission sources, and human exposure to volatile methyl siloxanes (VMSs) in indoor environments. Sci Total Environ. 2019;691:584–94. https://doi.org/10.1016/j.scitotenv.2019.07.168.

  9. 9.

    The European Commission. Commission Regulation (EU) 2018/35. L6/45–47. https://echa.europa.eu/documents/10162/9a53a4d9-a641-4b7b-ad58-8fec6cf26229 (accessed 3 Dec 2019).

  10. 10.

    Committee for Risk Assessment (RAC), Committee for Socio-economic Analysis (SEAC) (2016) ECHA/RAC/RES-O-0000001412-86-97/D ECHA/SEAC/RES-O-0000001412-86-109/F. https://echa.europa.eu/documents/10162/fa20d0e0-83fc-489a-9ee9-01a68383e3c0 (accessed 3 Dec 2019).

  11. 11.

    Capela D, Alves A, Homem V, Santos L. From the shop to the drain - volatile methylsiloxanes in cosmetics and personal care products. Environ Int. 2016;92–93:50–62. https://doi.org/10.1016/j.envint.2016.03.016.

  12. 12.

    Dudzina T, von Goetz N, Bogdal C, Biesterbos JWH, Hungerbühler K. Concentrations of cyclic volatile methylsiloxanes in European cosmetics and personal care products: prerequisite for human and environmental exposure assessment. Environ Int. 2014;62:86–94. https://doi.org/10.1016/j.envint.2013.10.002.

  13. 13.

    Brothers HM, Bovens E, Bruni A, Habitz TM, Hamachi T, Han Y, et al. A practical gas chromatography flame ionization detection method for the determination of octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane in silicone emulsions. J Chromatogr A. 2016;1441:116–25. https://doi.org/10.1016/j.chroma.2016.02.069.

  14. 14.

    Allan D, Radzinski SC, Tapsak MA, Liggat JJ. The thermal degradation behaviour of a series of siloxane copolymers - a study by thermal volatilisation analysis. Silicon. 2016;8:553–62. https://doi.org/10.1007/s12633-014-9247-6.

  15. 15.

    Kolb B, Ettre LS. Static headspace-gas chromatography: theory and practice. 2nd ed. New York: Wiley-Interscience; 2006.

  16. 16.

    Mana Kialengila D, Wolfs K, Bugalama J, Van Schepdael A, Adams E. Full evaporation headspace gas chromatography for sensitive determination of high boiling point volatile organic compounds in low boiling matrices. J Chromatogr A. 2013;1315:167–75. https://doi.org/10.1016/j.chroma.2013.09.058.

  17. 17.

    Brothers HM, Boehmer T, Campbell RA, Dorn S, Kerbleski JJ, Lewis S, et al. Determination of cyclic volatile methylsiloxanes in personal care products by gas chromatography. Int J Cosmet Sci. 2017;39:580–8. https://doi.org/10.1111/ics.12411.

  18. 18.

    Xu L, Shi Y, Liu N, Cai Y. Methyl siloxanes in environmental matrices and human plasma/fat from both general industries and residential areas in China. Sci Total Environ. 2015;505:454–63. https://doi.org/10.1016/j.scitotenv.2014.10.039.

  19. 19.

    Validation of Analytical Procedures: Text and Methodology Q2 (R1). ICH Harmon. Tripart. Guidel. 2005.

  20. 20.

    Capela D, Homem V, Alves A, Santos L. Volatile methylsiloxanes in personal care products – using QuEChERS as a “green” analytical approach. Talanta. 2016;155:94–100. https://doi.org/10.1016/j.talanta.2016.04.029.

  21. 21.

    Wang D-G, Alaee M, Steer H, Tait T, Williams Z, Brimble S, et al. Determination of cyclic volatile methylsiloxanes in water, sediment, soil, biota, and biosolid using large-volume injection–gas chromatography–mass spectrometry. Chemosphere. 2013;93:741–8. https://doi.org/10.1016/j.chemosphere.2012.10.044.

  22. 22.

    Rosendahl P, Hippler J, Schmitz OJ, Hoffmann O, Rusch P. Cyclic volatile methylsiloxanes in human blood as markers for ruptured silicone gel-filled breast implants. Anal Bioanal Chem. 2016;408:3309–17. https://doi.org/10.1007/s00216-016-9401-7.

Download references

Acknowledgments

The authors would like to thank the KU Leuven Doctoral Program and the Department of Pharmaceutical and Pharmacological Sciences for their financial support.

Author information

Correspondence to Erwin Adams.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aspromonte, J., Giacoppo, G., Wolfs, K. et al. Headspace gas chromatography for the determination of volatile methylsiloxanes in personal care products. Anal Bioanal Chem (2020). https://doi.org/10.1007/s00216-020-02478-y

Download citation

Keywords

  • Gas chromatography
  • Headspace
  • Total vaporization
  • Volatile siloxanes