Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The sensitive detection of ATP and ADA based on turn-on fluorescent copper/silver nanoclusters


A simple turn-on fluorescence strategy is proposed for the detection of ATP based on DNA-stabilized copper/silver nanoclusters (DNA-Cu/Ag NCs). The fluorescence intensity of DNA-Cu/Ag NCs increases significantly in the presence of ATP, because the specific interaction between ATP and its aptamer causes two darkish Cu/Ag NCs to be situated at the 5′ and 3′ termini close to each other. A limit of detection (LOD) of 7.0 μM is found, in a linear range of 2–18 mM, and the proposed sensor is simple, sensitive, and selective. Additionally, the DNA-Cu/Ag NCs/ATP system is further developed into a sensor for ADA detection and demonstrates a linear response to ADA from 5 to 50 U/L with a LOD of 5 U/L. The proposed method is also shown to be successful in detecting ATP and ADA in a solution of fetal bovine serum.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Park KS, Oh SS, Soh HT, Park HG. Target-controlled formation of silver nanoclusters in abasic site-incorporated duplex DNA for label-free fluorescence detection of theophylline. Nanoscale. 2014;6:9977–82.

  2. 2.

    Park KS, Park HG. A DNA-templated silver nanocluster probe for label-free, turn-on fluorescence-based screening of homo-adenine binding molecules. Biosens Bioelectron. 2015;64:618–24.

  3. 3.

    Zhang L, Liang R-P, Xiao S-J, Bai J-M, Zheng L-L, Zhan L, et al. DNA-templated Ag nanoclusters as fluorescent probes for sensing and intracellular imaging of hydroxyl radicals. Talanta. 2014;118:339–47.

  4. 4.

    Choi S, Dickson RM, Yu J. Developing luminescent silver nanodots for biological applications. Chem Soc Rev. 2012;41:1867–91.

  5. 5.

    Guo W, Yuan J, Dong Q, Wang E. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J Am Chem Soc. 2010;132:932–4.

  6. 6.

    MacLean JL, Morishita K, Liu J. DNA stabilized silver nanoclusters for ratiometric and visual detection of Hg2+ and its immobilization in hydrogels. Biosens Bioelectron. 2013;48:82–6.

  7. 7.

    Shang L, Dong S, Nienhaus GU. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today. 2011;6:401–18.

  8. 8.

    Yin J, He X, Wang K, Qing Z, Wu X, Shi H, et al. One-step engineering of silver nanoclusters-aptamer assemblies as luminescent labels to target tumor cells. Nanoscale. 2012;4:110–2.

  9. 9.

    Zhou Z, Du Y, Dong S. DNA-Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules. Biosens Bioelectron. 2011;28:33–7.

  10. 10.

    Diez I, Kanyuk MI, Demchenko AP, Walther A, Jiang H, Ikkala O, et al. Blue, green and red emissive silver nanoclusters formed in organic solvents. Nanoscale. 2012;4:4434–7.

  11. 11.

    Enkin N, Sharon E, Golub E, Willner I. Ag Nanocluster/DNA hybrids: functional modules for the detection of nitroaromatic and RDX explosives. Nano Lett. 2014;14:4918–22.

  12. 12.

    Park KS, Park HG. Technological applications arising from the interactions of DNA bases with metal ions. Curr Opin Biotechnol. 2014;28:17–24.

  13. 13.

    Richards CI, Choi S, Hsiang J-C, Antoku Y, Vosch T, Bongiorno A, et al. Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc. 2008;130:5038–9.

  14. 14.

    Gwinn EG, O’Neill P, Guerrero AJ, Bouwmeester D, Fygenson DK. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv Mater. 2008;20:279–83.

  15. 15.

    Li J, Zhong X, Zhang H, Le XC, Zhu J-J. Binding-induced fluorescence turn-on assay using aptamer-functionalized silver Nanocluster DNA probes. Anal Chem. 2012;84:5170–4.

  16. 16.

    Qian Y, Zhang Y, Lu L, Cai Y. A label-free DNA-templated silver nanocluster probe for fluorescence on-off detection of endonuclease activity and inhibition. Biosens Bioelectron. 2014;51:408–12.

  17. 17.

    Yeh H-C, Sharma J, Han JJ, Martinez JS, Werner JH. A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett. 2010;10:3106–10.

  18. 18.

    Chen W-Y, Lan G-Y, Chang H-T. Use of fluorescent DNA-templated gold/silver Nanoclusters for the detection of sulfide ions. Anal Chem. 2011;83:9450–5.

  19. 19.

    Su Y-T, Lan G-Y, Chen W-Y, Chang H-T. Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid. Anal Chem. 2010;82:8566–72.

  20. 20.

    Gessi S, Cattabriga E, Avitabile A, Gafa R, Lanza G, Cavazzini L, et al. Elevated expression of A(3) adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin Cancer Res. 2004;10:5895–901.

  21. 21.

    Stagg J, Smyth MJ. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene. 2010;29:5346–58.

  22. 22.

    Spychala J. Tumor-promoting functions of adenosine. Pharmacol Ther. 2000;87:161–73.

  23. 23.

    Yan X, Cao Z, Kai M, Lu J. Label-free aptamer-based chemiluminescence detection of adenosine. Talanta. 2009;79:383–7.

  24. 24.

    Yang J, Xu GW, Kong HW, Zheng WF, Pang T, Yang Q. Artificial neural network classification based on high-performance liquid chromatography of urinary and serum nucleosides for the clinical diagnosis of cancer. J Chromatogr B Anal Technol Biomed Life Sci. 2002;780:27–33.

  25. 25.

    Siragy HM, Linden J. Sodium intake markedly alters renal interstitial fluid adenosine. Hypertension. 1996;27:404–7.

  26. 26.

    Tzeng H-F, Hung C-H, Wang J-Y, Chou C-H, Hung H-P. Simultaneous determination of adenosine and its metabolites by capillary electrophoresis as a rapid monitoring tool for 5 '-nucleotidase activity. J Chromatogr A. 2006;1129:149–52.

  27. 27.

    Sottofattori E, Anzaldi M, Ottonello L. HPLC determination of adenosine in human synovial fluid. J Pharm Biomed Anal. 2001;24:1143–6.

  28. 28.

    Xiang Y, Tong A, Lu Y. Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range. J Am Chem Soc. 2009;131:15352–7.

  29. 29.

    Chen J-W, Liu X-P, Feng K-J, Liang Y, Jiang J-H, Shen G-L, et al. Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer. Biosens Bioelectron. 2008;24:66–71.

  30. 30.

    Zhu X, Zhang Y, Yang W, Liu Q, Lin Z, Qiu B, et al. Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer. Anal Chim Acta. 2011;684:121–5.

  31. 31.

    Yin B-C, Ma J-L, Le H-N, Wang S, Xu Z, Ye B-C. A new mode to light up an adjacent DNA-scaffolded silver probe pair and its application for specific DNA detection. Chem Commun. 2014;50(100):15991–4.

  32. 32.

    Aldrich MB, Blackburn MR, Kellems RE. The importance of adenosine deaminase for lymphocyte development and function. Biochem Biophys Res Commun. 2000;272:311–5.

  33. 33.

    Loo K, Degtyareva N, Park J, Sengupta B, Reddish M, Rogers CC, et al. Ag+-mediated assembly of 5′-guanosine monophosphate. J Phys Chem B. 2010;114:4320–6.

  34. 34.

    Liu X, Hu R, Gao Z, Shao N. Photoluminescence mechanism of DNA-templated silver nanoclusters: coupling between surface plasmon and emitter and sensing of lysozyme. Langmuir. 2015;31:5859–67.

  35. 35.

    Shaviv E, Schubert O, Alves-Santos M, Goldoni G, Di Felice R, Vallee F, et al. Absorption properties of metal-semiconductor hybrid nanoparticles. ACS Nano. 2011;5:4712–9.

  36. 36.

    Xu J, Wei C. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation. Biosens Bioelectron. 2017;87:422–7.

  37. 37.

    Song X-R, Goswami N, Yang H-H, Xie J. Functionalization of metal nanoclusters for biomedical applications. Analyst. 2016;141:3126–40.

  38. 38.

    Krishnadas KR, Ghosh A, Baksi A, Chakraborty I, Natarajan G, Pradeep T. Intercluster reactions between au-25(SR)(18) and Ag-44(SR)(30). J Am Chem Soc. 2016;138:140–8.

  39. 39.

    Zhou Q, Lin Y, Xu M, Gao Z, Yang H, Tang D. Facile synthesis of enhanced fluorescent gold-silver bimetallic nanocluster and its application for highly sensitive detection of inorganic pyrophosphatase activity. Anal Chem. 2016;88:8886–92.

  40. 40.

    Platzman I, Brener R, Haick H, Tannenbaum R. Oxidation of polycrystalline copper thin films at ambient conditions. J Phys Chem C. 2008;112:1101–8.

  41. 41.

    Deutsch KL, Shanks BH. Active species of copper chromite catalyst in C-O hydrogenolysis of 5-methylfurfuryl alcohol. J Catal. 2012;285:235–41.

  42. 42.

    Liu P, Hensen EJ. Highly efficient and robust au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J Am Chem Soc. 2013;135:14032–5.

  43. 43.

    Liao D, Jiao H, Wang B, Lin Q, Yu C. KF polymerase-based fluorescence aptasensor for the label-free adenosine detection. Analyst. 2012;137:978–82.

  44. 44.

    Lu L, Qian Y, Wang L, Ma K, Zhang Y. Metal-enhanced fluorescence-based core-shell Ag@SiO(2) nanoflares for affinity biosensing via target-induced structure switching of aptamer. ACS Appl Mater Interfaces. 2014;6:1944–50.

  45. 45.

    Ma J-L, Yin B-C, Ye B-C. A versatile proximity-dependent probe based on light-up DNA-scaffolded silver nanoclusters. Analyst. 2016;141:1301–6.

  46. 46.

    Song Q-W, Wang R-H, Sun F-F, Chen H-K, Wang Z-M-K, Na N, et al. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Biosens Bioelectron. 2017;87:760–3.

  47. 47.

    Zhu Y, Hu X-C, Shi S, Gao R-R, Huang H-L, Zhu Y-Y, et al. Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Biosens Bioelectron. 2016;79:205–12.

Download references


This work was supported by the National Natural Science Foundation of China (21171108).

Author information

Correspondence to Chunying Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 911 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wei, C. The sensitive detection of ATP and ADA based on turn-on fluorescent copper/silver nanoclusters. Anal Bioanal Chem (2020).

Download citation


  • DNA-Cu/Ag NCs
  • Aptamer
  • ATP
  • ADA
  • Fluorescence