Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Polychlorinated biphenyls (PCBs) in water: method development and application to river samples from a populated tropical urban area

Abstract

A method for the determination of polychlorinated biphenyls (PCBs) in water from urban rivers was implemented and validated. Extractions of dissolved and particulate PCBs were performed using solid-phase extraction and a pressurized solvent extraction system, respectively, and the analytes were identified and quantified by gas chromatography with tandem mass spectrometry in selected reaction monitoring mode with no further purification. The method was successfully developed for the determination of 41 PCBs with two precursor-product confirmations for each analyte. Low method detection limits (0.06–0.50 ng L−1) and good precision (≤ 20%; n = 8) were obtained, as well a linear response of the calibration curve ranging from 1.0 to 50 ng L−1. Method performance for real samples was tested with water collected weekly in triplicate during April 2018 from a eutrophic river in the city of Rio de Janeiro. The total (dissolved + particulate) PCB concentrations ranged from 2.17 to 5.29 ng L−1, above the threshold for river water quality standards in Brazil.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Pereira MS. Polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and polychlorinated biphenyls (PCB): main sources, environmental behaviour and risk to man and biota. Quı́mica Nova. 2004;27:934–43 Available from: http://www.scielo.br/scielo.php?script=sci{_}arttext{&}pid=S0100-40422004000600018{&}nrm=iso.

  2. 2.

    Rissato SR, Galhiane MS, Ximenes VF, de Andrade RMB, Talamoni JLB, Libânio M, et al. Organochlorine pesticides and polychlorinated biphenyls in soil and water samples in the Northeastern part of São Paulo State, Brazil. Chemosphere. 2006;65(11):1949–58 Available from: https://www.sciencedirect.com/science/article/pii/S0045653506008721?via{%}3Dihub.

  3. 3.

    Gakuba E, Moodley B, Ndungu P, Birungi G. Occurrence and significance of polychlorinated biphenyls in water, sediment pore water and surface sediments of Umgeni River, KwaZulu-Natal, South Africa. Environ Monit Assess. 2015;187(9).

  4. 4.

    Megson D, Benoit NB, Sandau CD, Chaudhuri SR, Long T, Coulthard E, et al. Evaluation of the effectiveness of different indicator PCBs to estimating total PCB concentrations in environmental investigations. Chemosphere. 2019;237:124429 Available from: https://www.sciencedirect.com/science/article/pii/S0045653519316509.

  5. 5.

    CONAMA. CONAMA N°357/2005 - Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Publicação DOU no 053, de 18/03/2005; 2005. Available from: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459.

  6. 6.

    Focant JF, Eppe G, Pauw E. Analytical measurement and levels of dioxins and PCBs in biological samples. In: Impact of pollution on animal products. Dordrecht: Springer Netherlands; 2008. p. 17–39. Available from: http://link.springer.com/10.1007/978-1-4020-8359-4{_}3.

  7. 7.

    Santos FJ, Galceran MT. Modern developments in gas chromatography–mass spectrometry-based environmental analysis. J Chromatogr A. 2003;1000(1–2):125–51 Available from: https://www.sciencedirect.com/science/article/pii/S0021967303003054?via{%}3Dihub.

  8. 8.

    Zhang Z, Huang J, Yu G, Hong H. Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environ Pollut. 2004;130(2):249–61 Available from: https://www.sciencedirect.com/science/article/pii/S0269749103004779?via{%}3Dihub.

  9. 9.

    Chiaradia MC, Collins CH, Jardim ICSF. O estado da arte da cromatografia associada à espectrometria de massas acoplada à espectrometria de massas na análise de compostos tóxicos em alimentos. Quı́mica Nova. 2008;31:623–36 Available from: http://www.scielo.br/scielo.php?script=sci{_}arttext{&}pid=S0100-40422008000300030{&}nrm=iso.

  10. 10.

    EPA. Method 3545A (SW-846): Pressurized fluid extraction (PFE). United States Environmental Protection Agency; 2007. Available from: https://www.epa.gov/homeland-security-research/method-3545a-sw-846-pressurized-fluid-extraction-pfe.

  11. 11.

    EPA. Method 1668C chlorinated biphenyl congeners in water, soil, sediment, biosolids, and tissue by HRGC/HRMS. Washington, DC.: Environmental Protection Agency, Engineering and Analysis Div.; 2010. Available from: https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB2009105236.xhtml.

  12. 12.

    EPA. EPA Method 3535A (SW-846): solid-phase extraction (SPE). Washington, DC: Environmental Protection Agency; 2007. Available from: https://www.epa.gov/homeland-security-research/epa-method-3535a-sw-846-solid-phase-extraction-spe

  13. 13.

    Chu S, Hong CS. Retention indexes for temperature-programmed gas chromatography of polychlorinated biphenyls. Anal Chem. 2004;76(18):5486–97 Available from: https://pubs.acs.org/doi/abs/10.1021/ac049526i.

  14. 14.

    Ramos Alex Martins. Separação de piperonal contido em uma solução de sı́ntese a partir do óleo essencial de Piper hispidinervum C. CD. por cromatografia lı́quida de alta eficiência com injeção empilhada. 2014; Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/266015.

  15. 15.

    Council of the European Union. EUR-Lex - 31996L0023 - EN. Official Journal L 125 , 23/05/1996 P 0010–0032; 1996. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31996L0023{&}from=EN.

  16. 16.

    Krumwiede D, Huebschmann HJ. Analysis of PCBs in food and biological samples using GC-triple quadrupole MS–MS. Thermo Scientific; 2008. Available from: http://www.chromatographyonline.com/analysis-pcbs-food-and-biological-samples-using-gc-triple-quadrupole-ms-ms.

  17. 17.

    R Core Team. R: a language and environment for statistical computing. Vienna, Austria; 2019. Available from: https://www.r-project.org/.

  18. 18.

    Wickham H. ggplot2: Elegant graphics for data analysis: Springer-Verlag; New York, 2016. Available from: http://ggplot2.org

  19. 19.

    Bivand R, Keitt T, Rowlingson B. rgdal: Bindings for the ‘Geospatial’ data abstraction library; 2018. Available from: https://cran.r-project.org/package=rgdal.

  20. 20.

    Prado Siqueira R. brazilmaps: Brazilian maps from different geographic levels; 2017. Available from: https://cran.r-project.org/package=brazilmaps.

  21. 21.

    code by Becker OSRA, version by by Minka ARWRRBETP, Deckmyn A. maps: draw geographical maps; 2018. Available from: https://cran.r-project.org/package=maps.

  22. 22.

    INMETRO. Orientações sobre Validação de Métodos de Ensaios Quı́micos, DOQ-CGCRE-008, Revisão 005.Instituto Nacional de Metrologia,Normalização e Qualidade Industrial; 2016.

  23. 23.

    ANVISA. Guia para Validação de Métodos Analı́ticos e Bioanalı́ticos. Brası́lia: ANVISA - Agência Nacional de Vigilância Sanitária; 2003. Available from: http://portal.anvisa.gov.br/documents/10181/2718376/RE{_}899{_}2003{_}COMP.pdf/ff6fdc6b-3ad1-4d0f-9af2-3625422e6f4b.

  24. 24.

    Walorczyk S. Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography–triple quadrupole tandem mass spectrometry. J Chromatogr A. 2007;1165(1–2):200–12 Available from: https://www.sciencedirect.com/science/article/pii/S002196730701326X?via{%}3Dihub.

  25. 25.

    Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC. Validação em métodos cromatográficos e eletroforéticos. Quı́mica Nova. 2004;27:771–80 Available from: http://www.scielo.br/scielo.php?script=sci{_}arttext{&}pid=S0100-40422004000500017{&}nrm=iso.

  26. 26.

    da Silva MM. Caracterização das águas do Canal do Mangue: Diagnóstico e propostas [Master Thesis]. Universidade do Estado do Rio de Janeiro; 2017. Available from: http://www.peamb.eng.uerj.br/trabalhosconclusao/2017/PEAMB2017MarisaMagalhaesdaSilva.pdf.

  27. 27.

    Buchman MF. Screening quick reference tables (SQuiRTs). Office of Response and Restoriation Division, National Oceanic and Atmospheric Administration: Seattle; 2008. Available from: https://repository.library.noaa.gov/view/noaa/9327

  28. 28.

    UNECE. Standard statistical classification of surface freshwater quality for the maintenance of aquatic life. In: Readings in International Environment Statistics, United Nations Economic Commission for Europe: United Nations. New York and Geneva; 1994. p. 53–64.

  29. 29.

    Chinese Environmental Protection Agency. National surface water environmental quality standards of China (GB3838-2002). Chinese Environmental Protection Agency: Beijing; 2002.

  30. 30.

    da Silva J, Taniguchi S, Becker JH, Werneck MR, Montone RC. Occurrence of organochlorines in the green sea turtle (Chelonia mydas) on the northern coast of the state of São Paulo, Brazil. Mar Pollut Bull. 2016;112(1–2):411–4.

  31. 31.

    Faroon O, Samuel KL. Polychlorinated biphenyls: human health aspects. Concise Int Chem Assess Doc. 2003;55.

  32. 32.

    Lavandier R. Contaminação por Poluentes Orgânicos Persistentes (POPs) em Organismos Marinhos da Costa Centro-Norte do Estado do Rio de Janeiro, Brasil [Phd Thesis]. Pontifı́cia Universidade Católica do Rio de Janeiro; 2015. Available from: https://www.maxwell.vrac.puc-rio.br/30472/30472{_}1.PDF.

  33. 33.

    Kobayashi J, Serizawa S, Sakurai T, Imaizumi Y, Suzuki N, Horiguchi T. Spatial distribution and partitioning of polychlorinated biphenyls in Tokyo Bay, Japan. J Environ Monit. 2010;12(4):838 Available from: http://xlink.rsc.org/?DOI=b925541a.

  34. 34.

    Mahmood A, Malik RN, Li J, Zhang G. Levels, distribution profile, and risk assessment of polychlorinated biphenyls (PCBs) in water and sediment from two tributaries of the River Chenab, Pakistan. Environ Sci Pollut Res. 2014;21(13):7847–55 Available from: http://link.springer.com/10.1007/s11356-014-2730-1.

  35. 35.

    Menzies R, Soares Quinete N, Gardinali P, Seba D. Baseline occurrence of organochlorine pesticides and other xenobiotics in the marine environment: Caribbean and Pacific collections. Mar Pollut Bull. 2013;70(1–2):289–95 Available from: https://www.sciencedirect.com/science/article/pii/S0025326X13001434.

  36. 36.

    Nie X, Lan C, Wei T, Yang Y. Distribution of polychlorinated biphenyls in the water, sediment and fish from the Pearl River estuary, China. Mar Pollut Bull. 2005;50(5):537–46 Available from: https://www.sciencedirect.com/science/article/pii/S0025326X04004734?via{%}3Dihub.

  37. 37.

    Montuori P, Aurino S, Garzonio F, Triassi M. Polychlorinated biphenyls and organochlorine pesticides in Tiber River and Estuary: occurrence, distribution and ecological risk. Sci Total Environ. 2016;571:1001–16 Available from: https://www.sciencedirect.com/science/article/pii/S0048969716315352?via{%}3Dihub.

  38. 38.

    Grande MD, Rezende MOO. Distribuição de Compostos Organoclorados nas Águas e Sedimentos da Bacia do Rio Piracicaba/SP - Brasil. Quı́mica Nova. 2003;26(5):678–86 Available from: http://quimicanova.sbq.org.br/imagebank/pdf/Vol26No5{_}678{_}10-AR02188.pdf.

  39. 39.

    Mendes BG, Budziak D, Stolberg J, Peixer ZI, Dalmarco JB, Simionatto EL, et al. Estudo da qualidade das águas do rio marombas (SC/Brasil), Utilizando parâmetros físico- químicos e bioensaios. Rev Ciências Ambientais. 2011;5(2):43–58 Available from: https://revistas.unilasalle.edu.br/index.php/Rbca/article/view/260.

  40. 40.

    de Andrade Brito I, Garcia JRE, Salaroli AB, Figueira RCL, de Castro Martins C, Neto AC, et al. Embryo toxicity assay in the fish species Rhamdia quelen (Teleostei, Heptaridae) to assess water quality in the Upper Iguaçu basin (Parana, Brazil). Chemosphere. 2018;208:207–18 Available from: https://www.sciencedirect.com/science/article/pii/S0045653518308518?via{%}3Dihub.

  41. 41.

    Starling MCVM, Amorim CC, Leão MMD. Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. J Hazard Mater. 2019;17–36.

  42. 42.

    Rizzi J, Taniguchi S, Martins CC. Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in sediments from an urban- and industrial-impacted subtropical estuary (Babitonga Bay, Brazil). Mar Pollut Bull. 2017;119(1):390–5.

  43. 43.

    Rizzi J, Pérez-Albaladejo E, Fernandes D, Contreras J, Froehner S, Porte C. Characterization of quality of sediments from Paranaguá Bay (Brazil) by combined in vitro bioassays and chemical analyses. Environ Toxicol Chem. 2017;36(7):1811–9.

  44. 44.

    Taniguchi S, Colabuono FI, Dias PS, Oliveira R, Fisner M, Turra A, et al. Spatial variability in persistent organic pollutants and polycyclic aromatic hydrocarbons found in beach-stranded pellets along the coast of the state of São Paulo, southeastern Brazil. Mar Pollut Bull. 2016;106(1–2):87–94.

  45. 45.

    Oliveira AHB, Cavalcante RM, Duavi WC, Fernandes GM, Nascimento RF, Queiroz ME, et al. The legacy of organochlorine pesticide usage in a tropical semi-arid region (Jaguaribe River, Ceará, Brazil): implications of the influence of sediment parameters on occurrence, distribution and fate. Sci Total Environ. 2016;542:254–63.

  46. 46.

    Lavandier R, Arêas J, Quinete N, De Moura JF, Taniguchi S, Montone R, et al. PCB and PBDE levels in a highly threatened dolphin species from the Southeastern Brazilian coast. Environ Pollut. 2016;208:442–9.

  47. 47.

    Alonso MB, Maruya KA, Dodder NG, Lailson-Brito J, Azevedo A, Santos-Neto E, et al. Nontargeted screening of halogenated organic compounds in bottlenose dolphins (Tursiops truncatus) from Rio de Janeiro, Brazil. Environ Sci Technol. 2017;51(3):1176–85.

  48. 48.

    Yogui GT, Taniguchi S, da Silva J, Miranda DA, Montone RC. The legacy of man-made organic compounds in surface sediments of pina sound and suape estuary, northeastern Brazil. Braz J Oceanogr. 2018;66(1):58–72.

  49. 49.

    Council NR. A risk-management strategy for PCB-contaminated sediments. Washington, DC: The National Academies Press; 2001. Available from: https://www.nap.edu/catalog/10041/a-risk-management-strategy-for-pcb-contaminated-sediments

  50. 50.

    Rezaei F, Bidari A, Birjandi AP, Milani Hosseini MR, Assadi Y. Development of a dispersive liquid-liquid microextraction method for the determination of polychlorinated biphenyls in water. J Hazard Mater. 2008;158(2–3):621–7.

  51. 51.

    Yang Y, Miller DJ, Hawthorne SB. Solid-phase microextraction of polychlorinated biphenyls. J Chromatogr A. 1998;800(2):257–66.

  52. 52.

    Thellmann P, Kuch B, Wurm K, Köhler HR, Triebskorn R. Water quality assessment in the “German River of the years 2014/2015”: how a case study on the impact of a storm water sedimentation basin displayed impairment of fish health in the Argen River (Southern Germany). Environ Sci Eur. 2017;29(1).

  53. 53.

    Pulford E, Polidoro BA, Nation M. Understanding the relationships between water quality, recreational fishing practices, and human health in Phoenix. Arizona. J Environ Manage. 2017;199:242–50.

  54. 54.

    Habibullah-Al-Mamun M, Kawser Ahmed M, Saiful Islam M, Tokumura M, Masunaga S. Occurrence, distribution and possible sources of polychlorinated biphenyls (PCBs) in the surface water from the Bay of Bengal coast of Bangladesh. Ecotoxicol Environ Saf. 2019;167:450–8.

  55. 55.

    Derouiche A, Driss MR, Morizur JP, Taphanel MH. Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in water by headspace solid-phase microextraction with gas chromatography-tandem mass spectrometry. J Chromatogr A. 2007;1138(1–2):231–43.

  56. 56.

    Sánchez-Avila J, Fernandez-Sanjuan M, Vicente J, Lacorte S. Development of a multi-residue method for the determination of organic micropollutants in water, sediment and mussels using gas chromatography-tandem mass spectrometry. J Chromatogr A. 2011;1218(38):6799–811.

  57. 57.

    Terzopoulou E, Voutsa D, Kaklamanos G. A multi-residue method for determination of 70 organic micropollutants in surface waters by solid-phase extraction followed by gas chromatography coupled to tandem mass spectrometry. Environ Sci Pollut Res. 2014;22(2):1095–112.

  58. 58.

    Quintana JB, Martinez E, Carro AM, Lorenzo RA, Cela R. Screening of polychlorinated biphenyls in water samples by strategic sample composition-solid phase extraction and gas chromatography tandem mass spectrometry. Comparison of different strategies for sample composition. Int J Environ Anal Chem. 2003;83(4):269–84.

  59. 59.

    Zang H, Yuan JP, Chen XF, Liu CA, Cheng CG, Zhao RS. Hollow fiberrotected metal-organic framework materials as micro-solid-phase extraction adsorbents for the determination of polychlorinated biphenyls in water samples by gas chromatography-tandem mass spectrometry. Anal Methods. 2013;5(18):4875–82.

  60. 60.

    Hong Y, Chunhong Z, Xiaoxiong Z. Investigation of pollution characteristics of polychlorinated biphenyls in the typical drinking water sources in Jiangsu Province, China. Environ Monit Assess. 2009;158(1–4):573–9.

  61. 61.

    Dominguez I, Arrebola FJ, Gavara R, Martinez Vidal JL, Frenich AG. Automated and simultaneous determination of priority substances and polychlorinated biphenyls in wastewater using headspace solid phase microextraction and high resolution mass spectrometry. Anal Chim Acta. 2018;1002:39–49.

  62. 62.

    Barco-Bonilla N, Nieto-Garcia AJ, Romero-González R, Martinez Vidal JL, Frenich AG. Simultaneous and highly sensitive determination of PCBs and PBDEs in environmental water and sediments by gas chromatography coupled to high resolution magnetic sector mass spectrometry. Anal Methods. 2015;7(7):3036–47.

  63. 63.

    Oliveira T, Santacroce G, Coleates R, Hale S, Zevin P, Belasco B. Concentrations of polychlorinated biphenyls in water from US Lake Ontario tributaries between 2004 and 2008. Chemosphere. 2011;82(9):1314–20.

  64. 64.

    Muir D, Sverko E. Analytical methods for PCBs and organochlorine pesticides in environmental monitoring and surveillance: a critical appraisal. Anal Bioanal Chem. 2006;386(4):769–89 Available from: http://link.springer.com/10.1007/s00216-006-0765-y.

  65. 65.

    Erickson MD. Analytical chemistry of PCBs. Second Edition: Routledge; 2018.

  66. 66.

    Clay DE, Wenske R, Anderson R. A programmed temperature vaporizing injector for large volume injections (application note: 10094). Austin: Thermo Electron Corporation; 2004. Available from: https://static.thermoscientific.com/images/D14316{ ̃}.pdf

  67. 67.

    Zhao L, Meng CK. Optimized method development of large volume injection for GC/MS/MS of food pesticides (application note). Wilmington: Agilent Technologies, Inc.; 2012. Available from: http://hpst.cz/sites/default/files/attachments/5991-1196en-optimized-method-development-large-volume-injection-gc-ms-ms-food-pesticides.pdf

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Correspondence to Carlos German Massone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(PDF 691 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stoll, G.C., da Silva Carreira, R. & Massone, C.G. Polychlorinated biphenyls (PCBs) in water: method development and application to river samples from a populated tropical urban area. Anal Bioanal Chem (2020). https://doi.org/10.1007/s00216-020-02468-0

Download citation

Keywords

  • Tandem mass spectrometry
  • PCBs
  • SPE
  • Method development
  • Environment pollution