Advertisement

A hyaluronic acid fluorescent hydrogel based on fluorescence resonance energy transfer for sensitive detection of hyaluronidase

  • Minghao Ge
  • Jiaojiao Sun
  • Mingli Chen
  • Jingjing Tian
  • Huancai YinEmail author
  • Jian YinEmail author
Research Paper
  • 64 Downloads

Abstract

Due to its important role in tumor development and treatment, hyaluronidase (HAase) has been widely investigated in vitro and in vivo. However, such investigation was limited by the absence of sensitive and in situ detection methods. Herein, a hyaluronic acid (HA) hydrogel based on the fluorescence resonance energy transfer (FRET) effect was constructed for the detection of HAase. FITC and AuNPs were covalently coupled with two HA derivatives respectively to form a fluorescent donor-acceptor pair. In the presence of HAase, the hydrogel established by cross-linking of HA derivatives was hydrolyzed specifically. The FRET effect in the hydrogel disappeared and the fluorescence intensity increased proportionally with the changes in the concentration of the HAase. Experiments proved that the HAase sensing system had a wide response range (0.5–100 U/mL), good anti-interference, and excellent biocompatibility. When the hydrogel was used for 3D culture of lung cancer cells, in situ fluorescent response could be achieved.

Graphical abstract

Keywords

Fluorescent sensor Hyaluronic acid Fluorescence resonance energy transfer Hydrogel Hyaluronidase 

Notes

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was funded and supported by grants from National Natural Science Foundation of China (No. 21876198), National Science and Technology Major Project of China (2017ZX10302301-003), National Key R&D Program of China (2017YFF0108600), and Natural Science Foundation of Shandong Province (ZR2019QB021).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

216_2020_2443_MOESM1_ESM.pdf (451 kb)
ESM 1 (PDF 451 kb)

References

  1. 1.
    Kolliopoulos C, Bounias D, Bouga H, Kyriakopoulou D, Stavropoulos M, Vynios DH. Hyaluronidases and their inhibitors in the serum of colorectal carcinoma patients. J Pharm Biomed Anal. 2013;83:299–304.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lokeshwar V, Rubinowicz D. Hyaluronic acid and hyaluronidase: molecular markers associated with prostate cancer biology and detection. Prostate Cancer Prostatic Dis. 1999;2:S21–S.CrossRefGoogle Scholar
  3. 3.
    Hautmann SH, Lokeshwar VB, Schroeder GL, Civantos F, Duncan RC, Gnann R, et al. Elevated tissue expression of hyaluronic acid and hyaluronidase validates the HA-HAase urine test for bladder cancer. J Urol. 2001;165(6):2068–74.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Liu R, Xiao W, Hu C, Xie R, Gao HL. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J Control Release. 2018;278:127–39.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Franzmann EJ, Schroeder GL, Goodwin WJ, Weed DT, Fisher P, Lokeshwar VB. Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. Int J Cancer. 2003;106(3):438–45.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Chib R, Mummert M, Bora I, Laursen BW, Shah S, Pendry R, et al. Fluorescent biosensor for the detection of hyaluronidase: intensity-based ratiometric sensing and fluorescence lifetime-based sensing using a long lifetime azadioxatriangulenium (ADOTA) fluorophore. Anal Bioanal Chem. 2016;408(14):3811–21.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Singh M, Mukundan S, Jaramillo M, Oesterreich S, Sant S. Three-dimensional breast cancer models mimic hallmarks of size-induced tumor progression. Cancer Res. 2016;76(13):3732–43.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085):1124–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Tang YD, Huang BX, Dong YQ, Wang WL, Zheng X, Zhou W, et al. Three-dimensional prostate tumor model based on a hyaluronic acid-alginate hydrogel for evaluation of anti-cancer drug efficacy. J Biomater Sci Polym Ed. 2017;28(14):1603–16.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Taubenberger AV, Bray LJ, Haller B, Shaposhnykov A, Binner M, Freudenberg U, et al. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater. 2016;36:73–85.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    David L, Dulong V, Le Cerf D, Chauzy C, Norris V, Delpech B, et al. Reticulated hyaluronan hydrogels: a model for examining cancer cell invasion in 3D. Matrix Biol. 2004;23(3):183–93.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wasteson A. Properties of fractionated chondroitin sulphate from ox nasal septa. Biochem J. 1971;122(4):477–&.Google Scholar
  13. 13.
    Diferrante N. Turbidimetric measurement of acid mucopolysaccharides and hyaluronidase activity. J Biol Chem. 1956;220(1):303–6.Google Scholar
  14. 14.
    Nossier AI, Eissa S, Ismail MF, Hamdy MA, Azzazy HME. Direct detection of hyaluronidase in urine using cationic gold nanoparticles: a potential diagnostic test for bladder cancer. Biosens Bioelectron. 2014;54:7–14.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Magalhaes MR, da Silva NJ, Ulhoa CJ. A hyaluronidase from Potamotrygon motoro (freshwater stingrays) venom: isolation and characterization. Toxicon. 2008;51(6):1060–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Bailey LC, Levine NA. Optimization of the usp assay for hyaluronidase. J Pharm Biomed Anal. 1993;11(4–5):285–92.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Xie HF, Zeng F, Wu SZ. Ratiometric fluorescent biosensor for hyaluronidase with hyaluronan as both nanoparticle scaffold and substrate for enzymatic reaction. Biomacromolecules. 2014;15(9):3383–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Liu SY, Zhao N, Cheng Z, Liu HG. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale. 2015;7(15):6836–42.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Chen M, Yin H, Bai P, Miao P, Deng X, Xu Y, et al. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells. Toxicol Appl Pharmacol. 2016;303:11–20.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tian J, Hu J, Liu G, Yin H, Chen M, Miao P, et al. Altered gene expression of ABC transporters, nuclear receptors and oxidative stress signaling in zebrafish embryos exposed to CdTe quantum dots. Environ Pollut. 2019;244:588–99.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release. 2000;69(1):169–84.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jia XQ, Colombo G, Padera R, Langer R, Kohane DS. Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials. 2004;25(19):4797–804.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Su HC, Ma Q, Shang K, Liu T, Yin HS, Ai SY. Gold nanoparticles as colorimetric sensor: a case study on E. coli O157:H7 as a model for Gram-negative bacteria. Sens Actuators B Chemical. 2012;161(1):298–303.CrossRefGoogle Scholar
  24. 24.
    Ma L, Gao WJ, Han X, Qu FL, Xia L, Kong RM. A label-free and fluorescence turn-on assay for sensitive detection of hyaluronidase based on hyaluronan-induced perylene self-assembly. NJCh. 2019;43(8):3383–9.CrossRefGoogle Scholar
  25. 25.
    Liu W, Ding F, Wang Y, Lu Z, Zou P, Wang X, et al. A dual-readout nanosensor based on biomass-based C-dots and chitosan@AuNPs with hyaluronic acid for determination of hyaluronidase. Luminescence. 2019.Google Scholar
  26. 26.
    Ge M, Bai P, Chen M, Tian J, Hu J, Zhi X, et al. Utilizing hyaluronic acid as a versatile platform for fluorescence resonance energy transfer-based glucose sensing. Anal Bioanal Chem. 2018;410(9):2413–21.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Liang F, Pan T, Sevick-Muraca EM. Measurements of FRET in a glucose-sensitive affinity system with frequency-domain lifetime spectroscopy. Photochem Photobiol. 2005;81(6):1386–94.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wu D, Shi XG, Zhao FL, Chilengue STF, Deng LD, Dong AJ, et al. An injectable and tumor-specific responsive hydrogel with tissue-adhesive and nanomedicine-releasing abilities for precise locoregional chemotherapy. Acta Biomater. 2019;96:123–36.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ge J, Cai R, Yang L, Zhang LL, Jiang Y, Yang Y, et al. Core-shell HA-AuNPs@SiNPs nanoprobe for sensitive fluorescence hyaluronidase detection and cell imaging. ACS Sustain Chem Eng. 2018;6(12):16555–62.CrossRefGoogle Scholar
  31. 31.
    Yang WQ, Ni JC, Luo F, Weng W, Wei QH, Lin ZY, et al. Cationic carbon dots for modification-free detection of hyaluronidase via an electrostatic-controlled ratiometric fluorescence assay. AnaCh. 2017;89(16):8384–90.Google Scholar
  32. 32.
    An LL, Liu LB, Wang S. Cationic conjugated polymers for homogeneous and sensitive fluorescence detection of hyaluronidase. Sci China Ser B Chem. 2009;52(6):827–32.CrossRefGoogle Scholar
  33. 33.
    Lee H, Lee K, Kim IK, Park TG. Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. Biomaterials. 2008;29(35):4709–18.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Gu W, Yan YH, Zhang CL, Ding CP, Xian YZ. One-step synthesis of water-soluble MoS2 quantum dots via a hydrothermal method as a fluorescent probe for hyaluronidase detection. ACS Appl Mater Interfaces. 2016;8(18):11272–9.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Wei H, Li B, Li J, Wang E, Dong S. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun. 2007;36:3735–7.CrossRefGoogle Scholar
  36. 36.
    Pem B, Pongrac IM, Ulm L, Pavicic I, Vrcek V, Jurasin DD, et al. Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione. Beilstein J Nanotechnol. 2019;10:1802–17.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Suo A, Xu W, Wang Y, Sun T, Ji L, Qian J. Dual-degradable and injectable hyaluronic acid hydrogel mimicking extracellular matrix for 3D culture of breast cancer MCF-7 cells. Carbohydr Polym. 2019;211:336–48.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Aref AR, Huang RYJ, Yu WM, Chua KN, Sun W, Tu TY, et al. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integr Biol. 2013;5(2):381–9.CrossRefGoogle Scholar
  39. 39.
    Bourguignon LYW, Singleton PA, Diedrich F, Stern R, Gilad E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem. 2004;279(26):26991–7007.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Berger JT, Voynow JA, Peters KW, Rose MC. Respiratory carcinoma cell lines - MUC genes and glycoconjugates. Am J Respir Cell Mol Biol. 1999;20(3):500–10.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Jacobson A, Rahmanian M, Rubin K, Heldin P. Expression of hyaluronan synthase 2 or hyaluronidase 1 differentially affect the growth rate of transplantable colon carcinoma cell tumors. Int J Cancer. 2002;102(3):212–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lokeshwar VB, Rubinowicz D, Schroeder GL, Forgacs E, Minna JD, Block NL, et al. Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer. J Biol Chem. 2001;276(15):11922–32.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Lokeshwar VB, Obek C, Pham HT, Wei D, Young MJ, Duncan RC, et al. Urinary hyaluronic acid and hyaluronidase: markers for bladder cancer detection and evaluation of grade. J Urol. 2000;163(1):348–56.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zhang L, Cui H. HAase-sensitive dual-targeting irinotecan liposomes enhance the therapeutic efficacy of lung cancer in animals. Nanotheranostics. 2018;2(3):280–94.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Pandit AH, Mazumdar N, Ahmad S. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications. Int J Biol Macromol. 2019;137:853–69.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.University of Science and Technology of ChinaHefeiChina
  2. 2.CAS Key Lab of Bio-Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology, Chinese Academy of SciencesSuzhouPeople’s Republic of China
  3. 3.Shandong Guo Ke Medical Technology Development Co., LtdJinanChina

Personalised recommendations