Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rhodnius spp. are differentiated based on the peptide/protein profile by matrix-assisted laser desorption/ionization mass spectrometry and chemometric tools

Abstract

Triatominae are hematophagous insects involved in the transmission of Chagas disease. Among the 19 genera of the subfamily, those with the highest epidemiological importance regarding the dissemination of Trypanosoma cruzi are Panstrongylus, Rhodnius, and Triatoma. Of these three genera, Rhodnius presents the greatest difficulties for specific identification. Thus, there is a need to overcome the difficulties in identifying phenotypes of similar species of this genus. In the present study, the MALDI-TOF MS methodology was used to identify 12 Rhodnius species, among the 21 admitted. The MALDI-TOF MS methodology allowed specific characterization through the identification of peptides and proteins, starting from four different methods of extraction: (A) acetonitrile/formic acid (ACN/AF), (B) acetonitrile/trifluoroacetic acid (ACN/TFA), (C) isopropyl/formic acid (IPA/AF), and (D) methanol/formic acid (MeOH/AF), and four types of MALDI-TOF matrices: α-cyano-4-hydroxycinnamic acid (CHCA), sinapic acid (SA), 6-aza-2-thiothymine (ATT), and 2,6-dihydroxyacetophenone (DHAP). The experiments were performed by combining the four solvents and four matrices to select the best MALDI extraction/matrix. The application of the MALDI-TOF MS technique, through the digital mass spectrometry approach combined with chemometric tools, such as partial least squares-discriminant analysis (PLS-DA), was able to discriminate 12 species of Rhodnius genus, which are difficult to identify using morphological characteristics. Thus, in view of the results obtained, the methodology described in the present article can be applied with speed and efficiency for the discrimination of Triatominae species.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    World Health Organization (WHO). Neglected tropical diseases. Genève: WHO; 2018. http://www.who.int/neglected_diseases/en/. Accessed 30 Aug 2018.

  2. 2.

    World Health Organization (WHO). Neglected tropical diseases. Genève: WHO; 2018. http://www.who.int/en/news-room/fact-sheets/detail/chagas-disease-(american trypanosomiasis). Accessed 30 Aug 2018.

  3. 3.

    Chagas C. Nova tripanossomiaze humana. Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp. agente etiologico da nova entidade mórbida do homem. Mem Inst Oswaldo Cruz. 1909;1:161–218.

  4. 4.

    Lima-Cordón RA, Monroy MC, Stevens L, Rodas A, Rodas GA, Dorn PL, et al. Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). ZooKeys. 2019;820:51–70.

  5. 5.

    Poinar G. A primitive triatomine bug, Paleotriatoma metaxytaxa gen. et sp. nov. (Hemiptera: Reduviidae: Triatominae), in mid-cretaceous amber from northern Myanmar. Cretac Res. 2018;93:90–7.

  6. 6.

    Galvão C, Carcavallo R, Rocha DDS, Jurberg J. A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa. 2003;202:1.

  7. 7.

    Rosa JA, Rocha CS, Gardim S, Mendonça MCPVJ, Filho, Júlio CRF, et al. Description of Rhodnius montenegrensis n. sp. (Hemiptera: Reduviidae: Triatominae) from the state of Rondônia, Brazil. Zootaxa. 2012;3478:62–76.

  8. 8.

    Abad-Franch F, Pavan MG, Jaramillo-O N, Palomeque FS, Dale C, Chaverra D, et al. Rhodnius barretti, a new species of Triatominae (Hemiptera: Reduviidae) from western Amazonia. Mem Inst Oswaldo Cruz. 2013;108:92–9.

  9. 9.

    Souza ED, Von Atzingen NC, Furtado MB, de Oliveira J, Nascimento JD, Vendrami DP, et al. Description of Rhodnius marabaensis sp. n. (Hemiptera, Reduviidae, Triatominae) from Pará State, Brazil. ZooKeys. 2016;621:45–62.

  10. 10.

    Soares RP, Sant'Anna MR, Gontijo NF, Romanha AJ, Diotaiuti L, Pereira MH. Identification of morphologically similar Rhodnius species (Hemiptera: Reduviidae: Triatominae) by electrophoresis of salivary heme proteins. Am J Trop Med Hyg. 2000;62:157–61.

  11. 11.

    Perez R, Panzera Y, Scafiezzo S, Mazzella MC, Panzera F, Dujardin JP, et al. Cytogenetics as a tool for Triatomine species distinction (Hemiptera-Reduviidae). Mem Inst Oswaldo Cruz. 1992;87:353–61.

  12. 12.

    Monteiro FA, Lazoski C, Noireau F, Solé-Cava AM. Allozyme relationships among ten species of Rhodniini, showing paraphyly of Rhodnius including Psammolestes. Med Vet Entomol. 2002;16:83–90.

  13. 13.

    Teixeira ARL, Monteiro PS, Rebelo JM, Argañaraz ER, Vieira D, Lauria-Pires L, et al. Emerging Chagas disease: trophic network and cycle of transmission of Trypanosoma cruzi from palm trees in the Amazon. Emerg Infect Dis. 2001;7:100–12.

  14. 14.

    Dias JP, Bastos C, Araújo E, Mascarenhas AV, Martins Netto E, Grassi F, et al. Acute Chagas disease outbreak associated with oral transmission. Rev Soc Bras Med Trop. 2008;41:296–300.

  15. 15.

    Pinto AY, Valente SA, Valente VC, Ferreira Junior AG, Coura JR. Acute phase of Chagas disease in the Brazilian Amazon region: study of 233 cases from Pará, Amapá and Maranhão observed between 1988 2005. Rev Soc Bras Med Trop. 2008;41:602–14.

  16. 16.

    Gillett JD. The genital sterna of the immature stages of Rhodnius prolixus (Hemiptera). Trans R Entomol Soc of Lond. 1935;83:1–5.

  17. 17.

    Soares RP, Barbosa S, Dujardin JP, Schofield CJ, Siqueira AM, Diotaiuti L. Characterization of Rhodnius neglectus from two regions of Brazil using isoenzymes, genitalia morphology and morphometry. Mem Inst Oswaldo Cruz. 1999;94:161–6.

  18. 18.

    Harry M. Morphometric variability in the Chagas’ disease vector Rhodnius prolixus. The Jap J of Genet. 1994;69:233–50.

  19. 19.

    Dias JCP. Epidemiological surveillance of Chagas disease. Cad Saúde Pública. 2000;16:S43–59.

  20. 20.

    Coura JR, Dias JCP. Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz. 2009;104:31–40.

  21. 21.

    Schofield CJ, Jannin J, Salvatella R. The future of Chagas disease control. Trends Parasitol. 2006;2212:583–8.

  22. 22.

    Coura JR. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions-a comprehensive review. Mem Inst Oswaldo Cruz. 2015;110:277–82.

  23. 23.

    Alevi KC, Rodas LA, Tartarotti E, Azeredo-Oliveira MT, Guirado MM. Entoepidemiology of Chagas disease in the Western region of the state of São Paulo from 2004 to 2008, and cytogenetic analysis in Rhodnius neglectus (Hemiptera, Triatominae). Genet Mol Res. 2015;14:5775–84.

  24. 24.

    Díaz S, Panzera F, Jaramillo-O N, Pérez R, Fernández R, Vallejo G, et al. Genetic, cytogenetic and morphological trends in the evolution of the Rhodnius (Triatominae: Rhodniini) trans-Andean group. PLoS One. 2014;9:e87493.

  25. 25.

    Da Rosa J, Mendonça V, Gardim S, de Carvalho D, de Oliveira J, Nascimento JD, et al. Study of the external female genitalia of 14 Rhodnius species (Hemiptera, Reduviidae, Triatominae) using scanning electron microscopy. Parasit Vectors. 2014;7:1–17.

  26. 26.

    Alevi KC, Ravazi A, Mendonça VJ, Rosa JA, Azeredo-Oliveira MT. Karyotype of Rhodnius montenegrensis (Hemiptera, Triatominae). Genetic Mol Res. 2015;12:222–6.

  27. 27.

    Alevi KC, Ravazi A, Franco-Bernardes MF, Rosa JA, Azeredo-Oliveira MT. Chromosomal evolution in the pallescens group (Hemiptera, Triatominae). Genetic Mol Res. 2015;14:12654–9.

  28. 28.

    Brenière SF, Condori EW, Buitrago R, Sosa LF, Macedo CL, Barnabé C. Molecular identification of wild triatomines of the genus Rhodnius in the Bolivian Amazon: strategy and current difficulties. Infect Genet Evol. 2017;51:1–9.

  29. 29.

    Justi SA, Russo CAM, Mallet J, Obara M, Galvão C. Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae). Parasit Vectors. 2014;7:149.

  30. 30.

    Bargues MD, Schofield C, Dujardin JP. Classification and systematics of the Triatominae. American Trypanosomiasis Chagas Disease (Second Edition). 2017:113–43.

  31. 31.

    Murugaiyan J, Roesler U. MALDI-TOF MS profiling-advances in species identification of pests, parasites, and vectors. Front Cell Infect Microbiol. 2017;7:184.

  32. 32.

    Giffen JE, Rosati JY, Longo CM, Musah RA. Species identification of Necrophagous insect eggs based on amino acid profile differences revealed by direct analysis in real time-high resolution mass spectrometry. Anal Chem. 2017;89:7719–26.

  33. 33.

    Ulrich S, Kühn U, Biermaier B, Piacenza N, Schwaiger K, Gottschalk C, et al. Direct identification of edible insects by MALDI-TOF mass spectrometry. Food Control. 2017;76:96–101.

  34. 34.

    Yssouf A, Almeras L, Raoult D, Parola P. Emerging tools for identification of arthropod vectors future. Microbiol. 2016;11:49–566.

  35. 35.

    Yssouf A, Parola P, Lindström A, Lilja T, L’Ambert G, Bondesson U, et al. Identification of European mosquito species by MALDI-TOF MS. Parasitol Res. 2014a;113:2375–8.

  36. 36.

    Yssouf A, Socolovschi C, Leulmi H, Kernif T, Bitam I, Audoly G, et al. Identification of flea species using MALDI-TOF/MS. Comp Immunol Microbiol Infect Dis. 2014;37:153–7.

  37. 37.

    Dvorak V, Halada P, Hlavackova K, Dokianakis E, Antoniou M, Volf P. Identification ofphlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasit and Vectors. 2014;7:1–7.

  38. 38.

    Sambou M, Aubadie-Ladrix M, Fenollar F, Fall B, Bassene H, Almeras L, et al. Comparison of matrix-assisted laser desorption ionization-time of flight mass spectrometry and molecular biology techniques for identification of culicoides (diptera: Ceratopogonidae) biting midges in Senegal. J Clin Microbiol. 2015;53:410–8.

  39. 39.

    Steinmann IC, Pflüger V, Schaffner F, Mathis A, Kaufmann C. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for the identification of ceratopogonid and culicid larvae. Parasitology. 2013;140:318–27.

  40. 40.

    Laroche M, Bérenger JM, Gazelle G, Blanchet D, Raoult D, Parola P. MALDI-TOF MS protein profiling for the rapid identification of Chagas disease triatomine vectors and application to the triatomine fauna of French Guiana. Parasitology. 2018;145:665–75.

  41. 41.

    Souza ES, Fernandes RP, Galvão C, de Paiva VF, da Rosa JA. Distinguishing two species of Cavernicola (Hemiptera, Reduviidae, Triatominae) with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Acta Trop. 2019;198:105071–3.

  42. 42.

    Dos Santos FN, Tata A, Belaz KRA, Magalhães DMA, Luz EDMN, Eberlin MN. Major phytopathogens and strains from cocoa (Theobroma cacao L.) are differentiated by MALDI-MS lipid and/or peptide/protein profiles. Anal Bioanal Chemi. 2016;409:1765–77.

  43. 43.

    Marinach-Patrice C, Lethuillier A, Marly A, Brossas JY, Gene J, Symoens F, et al. Use of mass spectrometry to identify clinical Fusarium isolates. Clin Microbiol Infect. 2009;15:634–42.

  44. 44.

    R Core Team, R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2016. http://www.R-project.org. Accessed 08 Dec 2018.

  45. 45.

    Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58:236–44.

  46. 46.

    Brereton RG, Lloyd GR. Partial least squares discriminant analysis: taking the magic away. J Chemom. 2014;28:213–25.

  47. 47.

    Kennard R, Stone LA. Computer aided design of experiments. Technometrics. 1969;11:137–48.

  48. 48.

    Brown CD, Davis HT. Receiver operating characteristics curves and related decision measures: a tutorial. Chemom Intell Lab Syst. 2006;80:24–38.

  49. 49.

    Carcavallo RU, Jurberg J, Lent H, Noireau F, Galvão C. Phylogeny of the Triatominae (Hemiptera: Reduviidae). Proposals for taxonomic arrangements. Entomol Vector. 2000;7:1–99.

  50. 50.

    Biancolillo A, Bucci R, Magrì AL, Magrì AD, Marini F. Data-fusion for multiplatform characterization of an italian craft beer aimed at its authentication. Anal Chim Acta. 2014;820:23–31.

  51. 51.

    Mehmood T, Liland KH, Snipen L, Sæbø S. A review of variable selection methods in partial least squares regression. Chemom Intell Lab Syst. 2012;118:62–9.

Download references

Acknowledgments

We thank the researchers Sebastião Aldo of the Evandro Chagas Institute (IOC), Brazil, who sent us species of R. milesi and Elis Jose Aldana of the University of the Andes of the Department of Biology of Venezuela for granting specimens of R. neivai for the development of this study.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Correspondence to Éder dos Santos Souza.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos Souza, É., Fernandes, R.P., Guedes, W.N. et al. Rhodnius spp. are differentiated based on the peptide/protein profile by matrix-assisted laser desorption/ionization mass spectrometry and chemometric tools. Anal Bioanal Chem 412, 1431–1439 (2020). https://doi.org/10.1007/s00216-019-02376-y

Download citation

Keywords

  • Triatominae
  • Rhodnius
  • Mass spectrometry
  • MALDI-TOF MS
  • Chemometric tools