Advertisement

Development of an LC–MS multivariate nontargeted methodology for differential analysis of the peptide profile of Asian hornet venom (Vespa velutina nigrithorax): application to the investigation of the impact of collection period variation

Abstract

Insect venom is a highly complex mixture of bioactive compounds, containing proteins, peptides, and small molecules. Environmental factors can alter the venom composition and lead to intraspecific variation in its bioactivity properties. The investigation of discriminating compounds caused by variation impacts can be a key to manage sampling and explore the bioactive compounds. The present study reports the development of a peptidomic methodology based on UHPLC–ESI-QTOF–HRMS analysis followed by a nontargeted multivariate analysis to reveal the profile variance of Vespa velutina venom collected in different conditions. The reliability of the approach was enhanced by optimizing certain XCMS data processing parameters and determining the sample peak threshold to eliminate the interfering features. This approach demonstrated a good repeatability and a criterion coefficient of variation (CV) > 30% was set for deleting nonrepeatable features from the matrix. The methodology was then applied to investigate the impact of collection period variation. PCA and PLS-DA models were used and validated by cross-validation and permutation tests. A slight discrimination was found between winter and summer hornet venom in two successive years with 10 common discriminating compounds.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 157

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Abdel-Rahman MA, Omran MAA, Abdel-Nabi IM, Nassier OA, Schemerhorn BJ. Neurotoxic and cytotoxic effects of venom from different populations of the Egyptian Scorpio maurus palmatus. Toxicon. 2010;55(2):298–306.

  2. 2.

    Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46(W1):W537–44.

  3. 3.

    Bai Y, Zhao Q, He M, Ye X, Zhang X. Extensive characterization and differential analysis of endogenous peptides from Bombyx batryticatus using mass spectrometric approach. J Pharm Biomed Anal. 2019;163:78–87.

  4. 4.

    Bao J, Ding R-B, Jia X, Liang Y, Liu F, Wang K, et al. Fast identification of anticancer constituents in Forsythiae Fructus based on metabolomics approaches. J Pharm Biomed Anal. 2018;154:312–20.

  5. 5.

    Bernardi RC, Firmino ELB, Mendonça A, Sguarizi-Antonio D, Pereira MC, da Cunha Andrade LH, et al. Intraspecific variation and influence of diet on the venom chemical profile of the Ectatomma brunneum Smith (Formicidae) ant evaluated by photoacoustic spectroscopy. J Photochem Photobiol B. 2017;175:200–6.

  6. 6.

    Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, et al. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem. 2006;78(2):567–74.

  7. 7.

    Boekel J, Chilton JM, Cooke IR, Horvatovich PL, Jagtap PD, Käll L, et al. Multi-omic data analysis using Galaxy. Nat Biotechnol. 2015;33:137–9.

  8. 8.

    Chen W, Yang X, Yang X, Zhai L, Lu Z, Liu J, et al. Antimicrobial peptides from the venoms of Vespa bicolor Fabricius. Peptides. 2008;29(11):1887–92.

  9. 9.

    Chen T-B, Zuo Y-H, Dong G-T, Liu L, Zhou H. An integrated strategy for rapid discovery and identification of quality markers in Guanxin Kangtai preparation using UHPLC-TOF/MS and multivariate statistical analysis. Phytomedicine. 2018;44:239–46.

  10. 10.

    Cologna CT, dos Cardoso J S, Jourdan E, Degueldre M, Upert G, Gilles N, et al. Peptidomic comparison and characterization of the major components of the venom of the giant ant Dinoponera quadriceps collected in four different areas of Brazil. J Proteome. 2013;94:413–22.

  11. 11.

    Cologna CT, Rodrigues RS, Santos J, de Pauw E, Arantes EC, Quinton L. Peptidomic investigation of Neoponera villosa venom by high-resolution mass spectrometry: seasonal and nesting habitat variations. J Venom Anim Toxins Incl Trop Dis. 2018;24:6.

  12. 12.

    Danneels EL, Van Vaerenbergh M, Debyser G, Devreese B, de Graaf DC. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins (Basel). 2015;7(11):4468–83.

  13. 13.

    Dias NB, de Souza BM, Gomes PC, Palma MS. Peptide diversity in the venom of the social wasp Polybia paulista (Hymenoptera): a comparison of the intra- and inter-colony compositions. Peptides. 2014;51:122–30.

  14. 14.

    Dunn WB, Broadhurst D, Brown M, Baker PN, Redman CWG, Kenny LC, et al. Metabolic profiling of serum using ultra performance liquid chromatography and the LTQ-Orbitrap mass spectrometry system. J Chromatogr B. 2008;871(2):288–98.

  15. 15.

    Eliasson M, Rännar S, Madsen R, Donten MA, Marsden-Edwards E, Moritz T, et al. Strategy for optimizing LC-MS data processing in metabolomics: a design of experiments approach. Anal Chem. 2012;84(15):6869–76.

  16. 16.

    Eliyahu D, Ross KG, Haight KL, Keller L, Liebig J. Venom alkaloid and cuticular hydrocarbon profiles are associated with social organization, queen fertility status, and queen genotype in the fire ant Solenopsis invicta. J Chem Ecol. 2011;37(11):1242–54.

  17. 17.

    Forsberg EM, Huan T, Rinehart D, Benton HP, Warth B, Hilmers B, et al. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS online. Nat Protoc. 2018;13(4):633–51.

  18. 18.

    Gao J-F, Wang J, He Y, Qu Y-F, Lin L-H, Ma X-M, et al. Proteomic and biochemical analyses of short-tailed pit viper (Gloydius brevicaudus) venom: age-related variation and composition–activity correlation. J Proteome. 2014;105:307–22.

  19. 19.

    Giacomoni F, Le Corguille G, Monsoor M, Landi M, Pericard P, Petera M, et al. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics. 2015;31(9):1493–5.

  20. 20.

    Gilar M, Belenky A, Wang BH. High-throughput biopolymer desalting by solid-phase extraction prior to mass spectrometric analysis. J Chromatogr A. 2001;921(1):3–13.

  21. 21.

    Good P. Permutation tests: a practical guide to resampling methods for testing hypotheses. Berlin: Springer Science & Business Media; 2013. 288 p.

  22. 22.

    Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, et al. A tutorial review: metabolomics and partial least squares-discriminant analysis-a marriage of convenience or a shotgun wedding. Anal Chim Acta. 2015;879:10–23.

  23. 23.

    Halassy B, Brgles M, Habjanec L, Balija ML, Kurtović T, Marchetti-Deschmann M, et al. Intraspecies variability in Vipera ammodytes ammodytes venom related to its toxicity and immunogenic potential. Comp Biochem Physiol C. 2011;153(2):223–30.

  24. 24.

    Katajamaa M, Orešič M. Data processing for mass spectrometry-based metabolomics. J Chromatogr A. 2007;1158(1):318–28.

  25. 25.

    Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem. 2012;84(1):283–9.

  26. 26.

    Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F, et al. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics. 2015;16:118.

  27. 27.

    Lievense R. Pharmaceutical quality by design using JMP®: solving product development and manufacturing problems. Cary: SAS Institute; 2018. 436 p.

  28. 28.

    Liu Z, Chen S, Zhou Y, Xie C, Zhu B, Zhu H, et al. Deciphering the venomic transcriptome of killer-wasp Vespa velutina. Sci Rep. 2015;5:9454.

  29. 29.

    Monceau K, Bonnard O, Thiéry D. Vespa velutina: a new invasive predator of honeybees in Europe. J Pest Sci. 2014;87(1):1–16.

  30. 30.

    Naz S, Vallejo M, García A, Barbas C. Method validation strategies involved in non-targeted metabolomics. J Chromatogr A. 2014;1353:99–105.

  31. 31.

    Nystrom GS, Ward MJ, Ellsworth SA, Rokyta DR. Sex-based venom variation in the eastern bark centipede (Hemiscolopendra marginata). Toxicon. 2019;169:45–58.

  32. 32.

    Ouyang Y, Tong H, Luo P, Kong H, Xu Z, Yin P, et al. A high throughput metabolomics method and its application in female serum samples in a normal menstrual cycle based on liquid chromatography-mass spectrometry. Talanta. 2018;185:483–90.

  33. 33.

    Owen MD. Quantitative and temporal changes in honey bee venom—a review. Toxicon. 1983;21:329–32.

  34. 34.

    Peiren N, Vanrobaeys F, de Graaf DC, Devreese B, Van Beeumen J, Jacobs FJ. The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim Biophys Acta. 2005;1752(1):1–5.

  35. 35.

    Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. 2018;26(10):2738–58.

  36. 36.

    Piek T. Venoms of the Hymenoptera: biochemical, pharmacological and behavioural aspects. Amsterdam: Elsevier; 2013. 583 p.

  37. 37.

    Rome Q, Muller FJ, Touret-Alby A, Darrouzet E, Perrard A, Villemant C. Caste differentiation and seasonal changes in Vespa velutina (Hym.: Vespidae) colonies in its introduced range. J Appl Entomol. 2015;139(10):771–82.

  38. 38.

    Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78(3):779–87.

  39. 39.

    Sookrung N, Wong-din-Dam S, Tungtrongchitr A, Reamtong O, Indrawattana N, Sakolvaree Y, et al. Proteome and allergenome of Asian wasp, Vespa affinis, venom and IgE reactivity of the venom components. J Proteome Res. 2014;13(3):1336–44.

  40. 40.

    Szymańska E, Saccenti E, Smilde AK, Westerhuis JA. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics. 2012;8(Suppl 1):3–16.

  41. 41.

    Touchard A, Dejean A, Escoubas P, Orivel J. Intraspecific variations in the venom peptidome of the ant Odontomachus haematodus (Formicidae: Ponerinae) from French Guiana. J Hymenopt Res. 2018 Mar 20;47:87–101.

  42. 42.

    Wang X, Zhao X, Gu L, Zhang Y, Bi K, Chen X. Discrimination of aqueous and vinegary extracts of Shixiao San using metabolomics coupled with multivariate data analysis and evaluation of anti-hyperlipidemic effect. Asian J Pharm Sci. 2014;9(1):17–26.

  43. 43.

    Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, et al. Assessment of PLSDA cross validation. Metabolomics. 2008;4(1):81–9.

  44. 44.

    Worley B, Powers R. Multivariate analysis in metabolomics. Curr Metabolomics. 2013;1(1):92–107.

  45. 45.

    Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37(Web Server issue):W652–60.

  46. 46.

    Zheng H, Clausen MR, Dalsgaard TK, Mortensen G, Bertram HC. Time-saving design of experiment protocol for optimization of LC-MS data processing in metabolomic approaches. Anal Chem. 2013;85(15):7109–16.

Download references

Acknowledgments

We express our acknowledgement to Eric DARROUZET of the Institut de Recherche sur la Biologie de l’Insecte (IRBI, UMR 7261) for providing the Asian hornets.

Funding information

We are grateful to the Centre-Val-de-Loire Region (France) and the program ARD 2020 Cosmétosciences for financial support.

Author information

Correspondence to David da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animals

Asian hornets in France are not currently covered by legislation on the protection of animals used for scientific purposes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 938 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le, T.N., da Silva, D., Colas, C. et al. Development of an LC–MS multivariate nontargeted methodology for differential analysis of the peptide profile of Asian hornet venom (Vespa velutina nigrithorax): application to the investigation of the impact of collection period variation. Anal Bioanal Chem (2020) doi:10.1007/s00216-019-02372-2

Download citation

Keywords

  • Mass spectrometry
  • Multivariate analysis
  • Peptidomic
  • Venom variation
  • Vespa velutina
  • XCMS