Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sorbent-incorporated dipstick for direct assaying of proteases


Efficient removal of interferents from complex matrices would significantly improve the performance of state of the art dipstick assays. Herein, we evaluate a graphitized carbon black (GCB)–incorporated dipstick, a configuration that has not been explored before, for reliable and facile on-site analysis of complex matrices. Carrot juice, a highly pigmented sample matrix, is chosen for evaluating the retention of interferents within the sorbent-incorporated cleanup pad on the dipstick. A peptide with a specific cleavage site for botulinum neurotoxin A light chain (BoNT/A LC), a model protease for validation of the proposed dipstick assay, is incubated with the test samples containing BoNT/A LC. Subsequently, the BoNT/A LC digested substrate and sample matrix flow vertically through the GCB-deposited cleanup pad within which the matrix interferents are captured, while the substrate, with a minimum of interferents, continues to flow toward a conjugation pad for labelling with Europium particles. Finally, the cleaved and uncleaved substrates flow toward a detection zone, where they bind to the test line producing a pinkish band which is not visible in the absence of GCB incorporation. The dipstick assay yields a LOD of 0.1 nM (5 ng/mL) of BoNT/A LC in carrot juice, within 20 min. The reported approach enables detection of proteases in a wide range of matrices upon incorporation of appropriate sorbents, ultimately aiming to exclude tedious laboratory-based sample pre-treatment protocols. Thus, merging extraction, cleanup, and pre-concentration steps with a sensitive optical detection approach is an attractive strategy for on-site assaying in complex matrices.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Song S, Liu N, Zhao Z, Njumbe Ediage E, Wu S, Sun C, et al. Multiplex lateral flow immunoassay for mycotoxin determination. Anal Chem. 2014;86:4995–5001. https://doi.org/10.1021/ac500540z.

  2. 2.

    Shin JH, Hong J, Go H, Park J, Kong M, Ryu S, et al. Multiplexed detection of foodborne pathogens from contaminated lettuces using a handheld multistep lateral flow assay device. J Agric Food Chem. 2018;66:290–7. https://doi.org/10.1021/acs.jafc.7b03582.

  3. 3.

    Anfossi L, Di Nardo F, Russo A, Cavalera S, Giovannoli C, Spano G, et al. Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Anal Bioanal Chem. 2019;411:1905–13. https://doi.org/10.1007/s00216-018-1451-6.

  4. 4.

    Wu Z. Simultaneous detection of listeria monocytogenes and Salmonella typhimurium by a SERS-based lateral flow immunochromatographic assay. Food Anal Methods. 2019;12:1086–91. https://doi.org/10.1007/s12161-019-01444-4.

  5. 5.

    Çam D, Öktem HA. Development of rapid dipstick assay for food pathogens, Salmonella, by optimized parameters. J Food Sci Technol. 2019;56:140–8. https://doi.org/10.1007/s13197-018-3467-5.

  6. 6.

    Anany H, Brovko L, El Dougdoug NK, Sohar J, Fenn H, Alasiri N, et al. Print to detect: a rapid and ultrasensitive phage-based dipstick assay for foodborne pathogens. Anal Bioanal Chem. 2018;410:1217–30. https://doi.org/10.1007/s00216-017-0597-y.

  7. 7.

    Yurova NS, Danchuk A, Mobarez SN, Wongkaew N, Rusanova T, Baeumner AJ, et al. Functional electrospun nanofibers for multimodal sensitive detection of biogenic amines in food via a simple dipstick assay. Anal Bioanal Chem. 2018;410:1111–21. https://doi.org/10.1007/s00216-017-0696-9.

  8. 8.

    Bueno D, Istamboulie G, Muñoz R, Marty JL. Determination of mycotoxins in food: a review of bioanalytical to analytical methods. Appl Spectrosc Rev. 2015;50:728–74. https://doi.org/10.1080/05704928.2015.1072092.

  9. 9.

    González-Curbelo M, Socas-Rodríguez B, Herrera-Herrera AV, González-Sálamo J, Hernández-Borges J, Rodríguez-Delgado M. Evolution and applications of the QuEChERS method. TrAC Trends Anal Chem. 2015;71:169–85. https://doi.org/10.1016/j.trac.2015.04.012.

  10. 10.

    Rahmani A, Jinap S, Soleimany F. Qualitative and quantitative analysis of mycotoxins. Compr Rev Food Sci Food Saf. 2009;8:202–51. https://doi.org/10.1111/j.1541-4337.2009.00079.x.

  11. 11.

    Rejczak T, Tuzimski T. Method development for sulfonylurea herbicides analysis in rapeseed oil samples by HPLC–DAD: comparison of zirconium-based sorbents and EMR-lipid for clean-up of QuEChERS extract. Food Anal Methods. 2017;10:3666–79. https://doi.org/10.1007/s12161-017-0939-6.

  12. 12.

    Ötles S, Kartal C. Solid-phase extraction (SPE): principles and applications in food samples. Acta Sci Pol Technol Aliment. 2016;15:5–15. https://doi.org/10.17306/J.AFS.2016.1.1.

  13. 13.

    Cabrera LC, Caldas SS, Prestes OD, Primel EG, Zanella R. Evaluation of alternative sorbents for dispersive solid-phase extraction clean-up in the QuEChERS method for the determination of pesticide residues in rice by liquid chromatography with tandem mass spectrometry. J Sep Sci. 2016;39:1945–54. https://doi.org/10.1002/jssc.201501204.

  14. 14.

    Parrilla Vazquez P, Ferrer C, Bueno MJM, Fernández-Alba AR. Pesticide residues in spices and herbs: sample preparation methods and determination by chromatographic techniques. TrAC Trends Anal. Chem. 2019;115:13–22. https://doi.org/10.1016/J.TRAC.2019.03.022.

  15. 15.

    Klisara N, Peters J, Haasnoot W, Nielen MWF, Palaniappan A, Liedberg B. Functional fluorescence assay of botulinum neurotoxin A in complex matrices using magnetic beads. Sensors Actuators B Chem. 2019;281:912–9. https://doi.org/10.1016/J.SNB.2018.10.100.

  16. 16.

    Peters J, Cardall A, Haasnoot W, Nielen MWF. 6-Plex microsphere immunoassay with imaging planar array detection for mycotoxins in barley †. Analyst. 2014;139(16):3968–76. https://doi.org/10.1039/c4an00368c.

  17. 17.

    Čadková M, Metelka R, Holubová L, Horák D, Dvořáková V, Bílková Z, et al. Magnetic beads-based electrochemical immunosensor for monitoring allergenic food proteins. Anal Biochem. 2015;484:4–8. https://doi.org/10.1016/J.AB.2015.04.037.

  18. 18.

    Lu C, Tang Z, Liu C, Kang L, Sun F. Magnetic-nanobead-based competitive enzyme-linked aptamer assay for the analysis of oxytetracycline in food. Anal Bioanal Chem. 2015;407:4155–63. https://doi.org/10.1007/s00216-015-8632-3.

  19. 19.

    Jönsson JÅ, Mathiasson L. Membrane-based techniques for sample enrichment. J Chromatogr A. 2000;902:205–25. https://doi.org/10.1016/S0021-9673(00)00922-5.

  20. 20.

    Gorecki T, Namiesnik J. Passive sampling. TrAC Trends Anal Chem. 2002;21:276–91. https://doi.org/10.1016/S0165-9936(02)00407-7.

  21. 21.

    Shukla HD, Sharma SK. Clostridium botulinum : a bug with beauty and weapon. Crit Rev Microbiol. 2005;31:11–8. https://doi.org/10.1080/10408410590912952.

  22. 22.

    Sobel J, Tucker N, Sulka A, McLaughlin J, Maslanka S. Foodborne botulism in the United States, 1990-2000. Emerg Infect Dis. 2004;10:1606–11. https://doi.org/10.3201/eid1009.030745.

  23. 23.

    Gessler F, Pagel-Wieder S, Avondet M-A, Böhnel H. Evaluation of lateral flow assays for the detection of botulinum neurotoxin type A and their application in laboratory diagnosis of botulism. Diagn Microbiol Infect Dis. 2007;57:243–9. https://doi.org/10.1016/J.DIAGMICROBIO.2006.07.017.

  24. 24.

    Sharma SK, Eblen BS, Bull RL, Burr DH, Whiting RC, Donald H, et al. Evaluation of lateral-flow Clostridium botulinum neurotoxin detection kits for food analysis. Appl Environ Microbiol. 2005;71:3935–41. https://doi.org/10.1128/AEM.71.7.3935-3941.2005.

  25. 25.

    Tripathi P, Upadhyay N, Nara S. Recent advancements in lateral flow immunoassays: a journey for toxin detection in food. Crit Rev Food Sci Nutr. 2018;58:1715–34. https://doi.org/10.1080/10408398.2016.1276048.

  26. 26.

    Orlov AV, Znoyko SL, Cherkasov VR, Nikitin MP, Nikitin PI. Multiplex biosensing based on highly sensitive magnetic nanolabel quantification: rapid detection of botulinum neurotoxins a, B, and E in liquids. Anal Chem. 2016;88:10419–26. https://doi.org/10.1021/acs.analchem.6b02066.

  27. 27.

    Agarwal R, Swaminathan S. SNAP-25 substrate peptide (residues 180-183) binds to but bypasses cleavage by catalytically active Clostridium botulinum neurotoxin E. J Biol Chem. 2008;283:25944–51. https://doi.org/10.1074/jbc.M803756200.

  28. 28.

    Liu X, Wang Y, Chen P, Wang Y, Zhang J, Aili D, et al. Biofunctionalized gold nanoparticles for colorimetric sensing of botulinum neurotoxin a light chain. Anal Chem. 2014;86:2345–52. https://doi.org/10.1021/ac402626g.

  29. 29.

    Klisara N, Yu YM, Palaniappan A, Liedberg B. Towards on-site visual detection of proteases in food matrices. Anal Chim Acta. 2019;1078:182–8. https://doi.org/10.1016/J.ACA.2019.06.037.

  30. 30.

    Wood SE, Sinsinbar G, Gudlur S, Nallani M, Huang C-F, Liedberg B, et al. A bottom-up proteomic approach to identify substrate specificity of outer-membrane protease OmpT. Angew Chemie Int Ed. 2017;56:16531–5. https://doi.org/10.1002/anie.201707535.

Download references


Support was obtained from Provost Office and the iFood initiative, NTU.

Author information

Correspondence to Alagappan Palaniappan or Bo Liedberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 1.08 mb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klisara, N., Palaniappan, A. & Liedberg, B. Sorbent-incorporated dipstick for direct assaying of proteases. Anal Bioanal Chem 412, 1385–1393 (2020). https://doi.org/10.1007/s00216-019-02366-0

Download citation


  • Sorbents
  • Proteases
  • Dipstick assay
  • Graphitized carbon black
  • Botulinum neurotoxin A
  • Europium particles