Advertisement

Nanoscale plasmonic phase sensor

  • Frank WackenhutEmail author
  • Lukas A. Jakob
  • Otto Hauler
  • Alexander Stuhl
  • Florian Laible
  • Monika Fleischer
  • Kai Braun
  • Alfred J. MeixnerEmail author
Research Paper
  • 82 Downloads
Part of the following topical collections:
  1. Advances in Direct Optical Detection

Abstract

Using the localized surface plasmon resonance (LSPR) of gold nanoparticles for sensing applications has attracted considerable interest, since it can be very sensitive, even down to a single molecule, and selective for a specific analyte molecule with a suitable surface modification. LSPR sensing is usually based on the wavelength shift of the LSPR or a Fano resonance. Here, we present a new experimental approach based on the phase of the light scattered by a single gold nanoparticle by equipping a confocal microscope with an additional interferometer arm similar to a Michelson interferometer. The detected phase depends on the shape of the nanoparticle and the refractive index of the surrounding medium and can even be detected for off-resonant excitation. This can be used as a new and sensitive detection method in LSPR sensing, allowing the detection of changes to the local refractive index or the binding of molecules to the nanoparticle surface.

Keywords

Single particle sensing Gold nanotriangle Particle plasmon Elastic scattering Optical microscopy Phase 

Notes

Funding information

This study received funding from DFG grants ME 1600/13-3, BR 532/1-1 and FL670/7-1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zuloaga J, Prodan E, Nordlander P. Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano. 2010;4(9):5269–76.CrossRefGoogle Scholar
  2. 2.
    Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B. 1999;103(40):8410–26.CrossRefGoogle Scholar
  3. 3.
    Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–77.CrossRefGoogle Scholar
  4. 4.
    Zijlstra P, Orrit M. Single metal nanoparticles: optical detection, spectroscopy and applications. Rep Prog Phys. 2011;74(10):106401.CrossRefGoogle Scholar
  5. 5.
    Wackenhut F, Failla AV, Meixner AJ. Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods. J Phys Chem C. 2013;117(34):17870–7.CrossRefGoogle Scholar
  6. 6.
    Pillai S, Catchpole KR, Trupke T, Zhang G, Zhao J, Green MA. Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl Phys Lett. 2006;88(16):161102.CrossRefGoogle Scholar
  7. 7.
    Derkacs D, Lim SH, Matheu P, Mar W, Yu ET. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett. 2006;89(9):093103.CrossRefGoogle Scholar
  8. 8.
    Pacardo D, Neupane B, Wang G, Gu Z, Walker G, Ligler F. A temperature microsensor for measuring laser-induced heating in gold nanorods. Anal Bioanal Chem. 2015;407(3):719–25.CrossRefGoogle Scholar
  9. 9.
    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 2005;5(8):1569–74.CrossRefGoogle Scholar
  10. 10.
    Orendorff CJ, Gearheart L, Jana NR, Murphy CJ. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys. 2006;8(1):165–70.CrossRefGoogle Scholar
  11. 11.
    Chen S-Y, Mock JJ, Hill RT, Chilkoti A, Smith DR, Lazarides AA. Gold nanoparticles on polarizable surfaces as Raman scattering antennas. ACS Nano. 2010;4(11):6535–46.CrossRefGoogle Scholar
  12. 12.
    Choi WI, Kim J-Y, Kang C, Byeon CC, Kim YH, Tae G. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano. 2011;5(3):1995–2003.CrossRefGoogle Scholar
  13. 13.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128(6):2115–20.CrossRefGoogle Scholar
  14. 14.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, et al. Nanostructured plasmonic sensors. Chem Rev. 2008;108(2):494–521.CrossRefGoogle Scholar
  15. 15.
    Chen B, Liu C, Hayashi K. Selective terpene vapor detection using molecularly imprinted polymer coated Au nanoparticle LSPR sensor. IEEE Sensors J. 2014;14(10):3458–64.CrossRefGoogle Scholar
  16. 16.
    Chen Y, Ming H. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens. 2012;2(1):37–49.CrossRefGoogle Scholar
  17. 17.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7(6):442–53.CrossRefGoogle Scholar
  18. 18.
    Cao J, Sun T, Grattan KTV. Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens Actuators B: Chem. 2014;195:332–51.CrossRefGoogle Scholar
  19. 19.
    Baciu CL, Becker J, Janshoff A, Sönnichsen C. Protein–membrane interaction probed by single plasmonic nanoparticles. Nano Lett. 2008;8(6):1724–8.CrossRefGoogle Scholar
  20. 20.
    Raschke G, Kowarik S, Franzl T, Sönnichsen C, Klar TA, Feldmann J, et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 2003;3(7):935–8.CrossRefGoogle Scholar
  21. 21.
    Zijlstra P, Paulo PMR, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nano. 2012;7(6):379–82.CrossRefGoogle Scholar
  22. 22.
    Aćimović SS, Ortega MA, Sanz V, Berthelot J, Garcia-Cordero JL, Renger J, et al. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett. 2014;14(5):2636–41.CrossRefGoogle Scholar
  23. 23.
    Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM. LSPR-based nanobiosensors. Nano Today. 2009;4(3):244–51.CrossRefGoogle Scholar
  24. 24.
    Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem Rev. 2011;111(6):3828–57.CrossRefGoogle Scholar
  25. 25.
    Hall WP, Ngatia SN, Van Duyne RP. LSPR biosensor signal enhancement using nanoparticle−antibody conjugates. J Phys Chem C. 2011;115(5):1410–4.CrossRefGoogle Scholar
  26. 26.
    Stobiecka M, Chalupa A. Modulation of plasmon-enhanced resonance energy transfer to gold nanoparticles by protein survivin channeled-shell gating. J Phys Chem B. 2015;119(41):13227–35.CrossRefGoogle Scholar
  27. 27.
    Hepel M, Stobiecka M. Detection of oxidative stress biomarkers using functional gold nanoparticles. Fine particles in medicine and pharmacy: Springer; 2012. p. 241–281.Google Scholar
  28. 28.
    Hepel M, Blake D, McCabe M, Stobiecka M, Coopersmith K. Assembly of gold nanoparticles induced by metal ions. Funct Nanoparticles Bioanal Nanomed Bioelectron Devices. 2012;1:207–40.CrossRefGoogle Scholar
  29. 29.
    Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008;8(11):3983–8.CrossRefGoogle Scholar
  30. 30.
    van de Hulst HC. Light scattering by small particles: Courier Corporation; 1981.Google Scholar
  31. 31.
    Schnell M, García-Etxarri A, Huber AJ, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photonics. 2009;3(5):287–91.CrossRefGoogle Scholar
  32. 32.
    Prikulis J, Xu H, Gunnarsson L, Käll M, Olin H. Phase-sensitive near-field imaging of metal nanoparticles. J Appl Phys. 2002;92(10):6211–4.CrossRefGoogle Scholar
  33. 33.
    Yang J, Wang Z, Wang F, Xu R, Tao J, Zhang S, et al. Atomically thin optical lenses and gratings. Light-Sci Appl. 2016;5(3):e16046-e.CrossRefGoogle Scholar
  34. 34.
    Hauler O, Wackenhut F, Jakob LA, Stuhl A, Laible F, Fleischer M, Meixner AJ, Braun K. Direct phase mapping of the light scattered by single plasmonic nanoparticles. Nanoscale. 2020;12:1083–90.CrossRefGoogle Scholar
  35. 35.
    Gollmer D, Walter F, Lorch C, Novák J, Banerjee R, Dieterle J, et al. Fabrication and characterization of combined metallic nanogratings and ITO electrodes for organic photovoltaic cells. Microelectron Eng. 2014;119:122–6.CrossRefGoogle Scholar
  36. 36.
    Wackenhut F, Failla AV, Züchner T, Steiner M, Meixner AJ. Three-dimensional photoluminescence mapping and emission anisotropy of single gold nanorods. Appl Phys Lett. 2012;100(26):263102–4.CrossRefGoogle Scholar
  37. 37.
    Zerulla D, Uhlig I, Szargan R, Chassé T. Competing interaction of different thiol species on gold surfaces. Surf Sci. 1998;402–404:604–8.CrossRefGoogle Scholar
  38. 38.
    Failla AV, Qian H, Qian H, Hartschuh A, Meixner AJ. Orientational imaging of subwavelength Au particles with higher order laser modes. Nano Lett. 2006;6(7):1374–8.CrossRefGoogle Scholar
  39. 39.
    Züchner T, Failla AV, Steiner M, Meixner AJ. Probing dielectric interfaces on the nanoscale with elastic scattering patterns of single gold nanorods. Opt Express. 2008;16(19):14635–44.CrossRefGoogle Scholar
  40. 40.
    Shervedani RK, Hatefi-Mehrjardi A, Babadi MK. Comparative electrochemical study of self-assembled monolayers of 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, and 2-mercaptobenzimidazole formed on polycrystalline gold electrode. Electrochim Acta. 2007;52(24):7051–60.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Frank Wackenhut
    • 1
    Email author
  • Lukas A. Jakob
    • 1
  • Otto Hauler
    • 1
  • Alexander Stuhl
    • 1
  • Florian Laible
    • 2
    • 3
  • Monika Fleischer
    • 2
    • 3
  • Kai Braun
    • 1
    • 3
  • Alfred J. Meixner
    • 1
    • 3
    Email author
  1. 1.Institute of Physical and Theoretical ChemistryEberhard Karls UniversityTuebingenGermany
  2. 2.Institute for Applied PhysicsEberhard Karls UniversityTuebingenGermany
  3. 3.Center for Light-Matter-Interaction, Sensors and Analytics LISA+Eberhard Karls UniversityTuebingenGermany

Personalised recommendations