Nosy confirmation: reconstitution of the characteristic odor of softwood via quantitative analysis and human sensory evaluation

  • Linda Schreiner
  • Eva Ortner
  • Andrea BuettnerEmail author
Research Paper


The significance of wood odors beyond flavoring effects for barbecues and wine aged in barrels has recently been under discussion. Wood has an immense influence on our physical and mental condition through our palate, such as positive health and mood-stimulating effects. As a result of increased public interest, the key odorants from various natural wood species were recently decoded. To gain profound insights into the contribution of single odorants to the overall scent of distinct wood types, this study compares several softwood species (Scots pine, incense cedar, European larch, Norway spruce, and white fir) by odor profile analysis. Nine odor-active constituents, which were previously detected in those woods, were quantified using stable isotope dilution analysis (SIDA). Odor activity values (OAVs) calculated on the basis of odor thresholds (OTs) determined in cellulose revealed hexanal, octanal, (E)-non-2-enal, p-cresol, vanillin, and thymoquinone as dominant odorants for wood odor. Recombination experiments by mixing the odorants in their naturally occurring concentrations in a cellulose matrix confirmed the successful characterization of the key odorants for Scots pine and incense cedar wood.


Wood Odor activity values Odor recombination Thymoquinone α-Pinene 



We are grateful to Dr. Alexander Vyhnal and Staedtler Mars GmbH & Co KG for supplying the incense cedar, white fir, and Scots pine wood samples as well as to Richard Hammerl for providing help regarding NMR analyses and to the members of our working group for their participation in the sensory analyses. This study was carried out within the framework of the Campus of the Senses, a joint endeavor of the Fraunhofer Institutes for Process Engineering and Packaging IVV and Integrated Circuits IIS, together with Friedrich-Alexander-Universität Erlangen-Nürnberg as an academic partner. The Campus of the Senses initiative is financially supported by the Bavarian Ministry of Economic Affairs, Regional Development and Energy (StMWi), and the Fraunhofer society.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

The study was conducted in agreement with the Declaration of Helsinki. The study (registration number 180_16B) was approved by the Ethical Committee of the Medical Faculty, Friedrich-Alexander Universität Erlangen-Nürnberg. Informed consent was obtained from all subjects participating in the study.

Supplementary material

216_2019_2339_MOESM1_ESM.pdf (125 kb)
ESM 1 (PDF 125 kb).


  1. 1.
    Rametsteiner E, Oberwimmer R, Gschwandtl I, editors. Europeans and wood. What do Europeans think about wood and its uses? A review of consumer and business surveys in Europe: Ministerial Conference on the Protection of Forests in Europe Liaison Unit Warsaw. 2007.Google Scholar
  2. 2.
    Kardan O, Gozdyra P, Misic B, Moola F, Palmer LJ, Paus T, et al. Neighborhood greenspace and health in a large urban center. Sci Rep. 2015;5:11610.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hunter MR. Urban nature experiences reduce stress in the context of daily life based on salivary biomarkers. Front Psychol. 2019;10:722.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hansen MM, Jones R, Tocchini K. Shinrin-yoku (forest bathing) and nature therapy: a state-of-the-art review. Int J Environ Res Public Health. 2017;14(8):851.PubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ross RJ. Wood handbook: wood as an engineering material, vol. 1. Madison, WI: USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190; 2010. p. 509. 190Google Scholar
  6. 6.
    Fengel D, Wegener G. Wood: chemistry, ultrastructure, reactions. Berlin: De Gruyter; 1983.CrossRefGoogle Scholar
  7. 7.
    Miller RB. Characteristics and availability of commercially important woods. 1999;113.Google Scholar
  8. 8.
    Culleré L, Fernández de Simón B, Cadahía E, Ferreira V, Hernández-Orte P, Cacho J. Characterization by gas chromatography–olfactometry of the most odor-active compounds in extracts prepared from acacia, chestnut, cherry, ash and oak woods. LWT Food Sci Technol. 2013;53(1):240–8.CrossRefGoogle Scholar
  9. 9.
    Díaz-Maroto MC, Guchu E, Castro-Vázquez L, de Torres C, Pérez-Coello MS. Aroma-active compounds of American, French, Hungarian and Russian oak woods, studied by GC–MS and GC–O. Flavour Frag. J. 2008;23(2):93–8.CrossRefGoogle Scholar
  10. 10.
    Ghadiriasli R, Wagenstaller M, Buettner A. Identification of odorous compounds in oak wood using odor extract dilution analysis and two-dimensional gas chromatography-mass spectrometry/olfactometry. Anal Bioanal Chem. 2018;410(25): 6595-6607.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Schreiner L, Bauer P, Buettner A. Resolving the smell of wood—identification of odour-active compounds in Scots pine (Pinus sylvestris L.). Sci Rep. 2018;8(1):8294.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Schreiner L, Loos HM, Buettner A. Identification of odorants in wood of Calocedrus decurrens (Torr.) Florin by aroma extract dilution analysis and two-dimensional gas chromatography–mass spectrometry/olfactometry. Anal Bioanal Chem. 2017;409(15):3719–29.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Wagenführ R. Holzatlas. Leipzig: Fachbuchverlag; 2007.Google Scholar
  14. 14.
    Buksnowitz C, Teischinger A, Müller U, Pahler A, Evans R. Resonance wood [Picea abies (L.) Karst.]—evaluation and prediction of violin makers’ quality-grading. J Acoust Soc Am. 2007;121(4):2384–95.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Roloff A. Bäume Nordamerikas: Von Alligator-Wachholder bis Zuckerahorn. Alle charakteristischen Arten im Porträt. Weinheim: Wiley-VCH; 2010. p. 501–3.Google Scholar
  16. 16.
    Laacke RJ. Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. White fir. Silvics of North America. 1990;1:36–46.Google Scholar
  17. 17.
    Veluthoor S, Kelsey RG, González-Hernández M, Panella N, Dolan M, Karchesy J. Composition of the heartwood essential oil of incense cedar (Calocedrus decurrens Torr.) Holzforschung. 2011;65(3):333–6.Google Scholar
  18. 18.
    Kwak CS, Moon SC, Lee MS. Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora). Nutr Cancer. 2006;56(2):162–71.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Judžentienė A, Šližytė J, Stiklienė A, Kupčinskienė E. Characteristics of essential oil composition in the needles of young stand of Scots pine ( Pinus sylvestris L.) growing along aerial ammonia gradient. Chemija. 2006;17(2):67–73.Google Scholar
  20. 20.
    Bumgardner MS, Bowe SA. Species selection in secondary wood products: implications for product design and promotion. Wood Fiber Sci. 2007;34(3):408–18.Google Scholar
  21. 21.
    Iqbal N, Mustafa G, Rehman A, Biedermann A, Najafi B, Lieberzeit PA, et al. QCM-arrays for sensing terpenes in fresh and dried herbs via bio-mimetic MIP layers. Sensors. 2010;10(7):6361–76.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Johnson-Ajinwo OR, Li W-W. Stable isotope dilution gas chromatography–mass spectrometry for quantification of thymoquinone in black cumin seed oil. J Agric Food Chem. 2014;62(24):5466–71.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Frank O, Kreissl JK, Daschner A, Hofmann T. Accurate determination of reference materials and natural isolates by means of quantitative 1H NMR spectroscopy. J Agric Food Chem. 2014;62(12):2506–15.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Czerny M, Christlbauer M, Christlbauer M, Fischer A, Granvogl M, Hammer M, et al. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur Food Res Technol. 2008;228(2):265–73.CrossRefGoogle Scholar
  25. 25.
    Lawless HT, Heymann H. Sensory evaluation of food: principles and practices. Nwe York: Springer; 1999.Google Scholar
  26. 26.
    Schieberle P, Grosch W. Quantitative analysis of aroma compounds in wheat and rye bread crusts using a stable isotope dilution assay. J Agric Food Chem. 1987;35(2):252–7.CrossRefGoogle Scholar
  27. 27.
    Engel W, Bahr W, Schieberle P. Solvent assisted flavour evaporation—a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur Food Res Technol. 1999;209(3):237–41.CrossRefGoogle Scholar
  28. 28.
    Bemelmans J. Review of isolation and concentration techniques. Prog Flavour Res. 1979;8:79–98.Google Scholar
  29. 29.
    Candelier K, Dumarçay S, Pétrissans A, Pétrissans M, Kamdem P, Gérardin P. Thermodesorption coupled to GC–MS to characterize volatiles formation kinetic during wood thermodegradation. J Anal Appl Pyrolysis. 2013;101:96–102.CrossRefGoogle Scholar
  30. 30.
    Pińkowska H, Wolak P, Złocińska A. Hydrothermal decomposition of alkali lignin in sub-and supercritical water. Chem Eng J. 2012;187:410–4.CrossRefGoogle Scholar
  31. 31.
    Hillis W, Inoue T. The formation of polyphenols in trees—IV: the polyphenols formed in Pinus radiata after Sirex attack. Phytochemistry. 1968;7(1):13–22.CrossRefGoogle Scholar
  32. 32.
    Grosch W. Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem Senses. 2001;26(5):533–45.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Czerny M, Grosch W. Potent odorants of raw Arabica coffee. Their changes during roasting. J Agric Food Chem. 2000;48(3):868–72.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Czerny M, Buettner A. Odor-active compounds in cardboard. J Agric Food Chem. 2009;57(21):9979–84.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Siefarth C, Serfert Y, Drusch S, Buettner A. Comparative evaluation of diagnostic tools for oxidative deterioration of polyunsaturated fatty acid-enriched infant formulas during storage. Foods. 2014;3(1):30–65.CrossRefGoogle Scholar
  36. 36.
    Kollmann F. Anatomie und Pathologie, Chemie, Physik Elastizität und Festigkeit: 1. Band. Berlin: Springer; 2013.Google Scholar
  37. 37.
    Tsoumis G. Wood as raw material: source, structure, chemical composition, growth, degradation and identification. Amsterdam: Elsevier Science; 2013.Google Scholar
  38. 38.
    Risholm-Sundman M, Lundgren M, Vestin E, Herder P. Emissions of acetic acid and other volatile organic compounds from different species of solid wood. Holz Roh Werkst. 1998;56(2):125–9.CrossRefGoogle Scholar
  39. 39.
    Baumann MG, Batterman SA, Zhang G-Z. Terpene emissions from particleboard and medium-density fiberboard products. For Prod J. 1999;49(1):49–56.Google Scholar
  40. 40.
    Sjöström E. Wood chemistry: fundamentals and applications. New York: Academic Press; 1981.Google Scholar
  41. 41.
    Geladi P, Arshadi M, Gref R, Fjällström P. Emission of volatile aldehydes and ketones from wood pellets under controlled conditions. Ann Occup Hyg. 2009;53(8):797–805.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Alves A, Gierlinger N, Schwanninger M, Rodrigues J. Analytical pyrolysis as a direct method to determine the lignin content in wood: part 3. Evaluation of species-specific and tissue-specific differences in softwood lignin composition using principal component analysis. J Anal Appl Pyrolysis. 2009;85(1–2):30–7.CrossRefGoogle Scholar
  43. 43.
    Zavarin E, Anderson AB. Extractive components from incense-cedar heartwood (Libocedrus decurrens Torrey) I. Occurrence of carvacrol, hydrothymoquinone, and thymoquinone. J. Org. Chem. 1955;20(1):82–8.CrossRefGoogle Scholar
  44. 44.
    Scheffer TC. Natural resistance of wood to microbial deterioration. Annu Rev Phytopathol. 1966;4(1):147–68.CrossRefGoogle Scholar
  45. 45.
    Overend RP, Milne T, Mudge L. Fundamentals of thermochemical biomass conversion. Netherlands: Springer; 2012.Google Scholar
  46. 46.
    Komenda M, Koppmann R. Monoterpene emissions from Scots pine ( Pinus sylvestris): field studies of emission rate variabilities. J Geophys Res Atmos. 2002;107(D13), ACH-1.Google Scholar
  47. 47.
    Silvério FO, Barbosa LC, Maltha CR, Fidêncio PH, Cruz MP, Veloso DP, et al. Effect of storage time on the composition and content of wood extractives in Eucalyptus cultivated in Brazil. Bioresour Technol. 2008;99(11):4878–86.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Morais MC, Pereira H. Variation of extractives content in heartwood and sapwood of Eucalyptus globulus trees. Wood Sci Technol. 2012;46(4):709–19.CrossRefGoogle Scholar
  49. 49.
    Plotto A, Margaría CA, Goodner KL, Goodrich R, Baldwin EA. Odour and flavour thresholds for key aroma components in an orange juice matrix: terpenes and aldehydes. Flavour Frag. J. 2004;19(6):491-8.CrossRefGoogle Scholar
  50. 50.
    Buettner A, Schieberle P. Evaluation of aroma differences between hand-squeezed juices from Valencia late and navel oranges by quantitation of key odorants and flavor reconstitution experiments. J Agric Food Chem. 2001;49(5):2387–94.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Department Sensory AnalyticsFraunhofer-Institute for Process Engineering and Packaging IVVFreisingGermany

Personalised recommendations