Fluorescent recognition and selective detection of nitrite ions with carbon quantum dots

  • Wenshuai Li
  • Saipeng HuangEmail author
  • Huiyun Wen
  • Yane Luo
  • Jiewei Cheng
  • Zhao Jia
  • Pu Han
  • Weiming XueEmail author
Research Paper


The nitrite ion (NO2) is a vital inorganic species that occurs both in natural ecological systems and human bodies. The high concentration of NO2 can be harmful for animal and human health. It is important to develop a simple, sensitive, reliable, and economic methodology to precisely monitor NO2 in various environmental and biological fields. Thus, a novel nitrite biosensor based on carbon quantum dots (PA-CDs) has been constructed and prepared via a high-efficiency, one-pot hydrothermal route using primary arylamines (PA) such as m-phenylenediamine. The device exhibits bright green fluorescence and a high quantum yield of 20.1% in water. In addition, the PA-CDs also possess two broad linear ranges: 0.05–1.0 μM and 1.0–50 μM with a low detection limit of 7.1 nM. The classical diazo reaction is firstly integrated into the PA-CD system by primary arylamines, which endows the system with high sensitivity and specific selectivity towards nitrite. Importantly, the nanosensor can detect NO2 in environmental water and serum samples with high fluorescence recoveries, demonstrating its feasibility in practical applications. This work broadens a new method to fabricate novel nanosensors and provides a prospective application for fluorescent carbon quantum dots (CDs).

Graphical abstract


Carbon quantum dots Nitrite Diazo reaction Primary arylamines Fluorescence 


Funding information

This research was supported by Shaanxi Provincial Natural Science Basic Research Project, China (2018JM2037) and Shaanxi Provincial Natural Science Basic Research Program - General Project (Youth) “2019JQ-461.” This study was also supported by China postdoctoral science foundation on the 61st project (2017M613190).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interests.

Supplementary material

216_2019_2325_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1352 kb)


  1. 1.
    Liu L, Ma Q, Liu Z, Li Y, Su X. Detection of trace nitrite in waters using a QDs-based chemiluminescence analysis system. Anal Bioanal Chem. 2014;406(3):879–86.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ma Y, Wang Y, Xie D, Gu Y, Zhang H, Wang G, et al. NiFe-layered double hydroxide nanosheet arrays supported on carbon cloth for highly sensitive detection of nitrite. ACS Appl Mater Interfaces. 2018;10(7):6541–51.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Xiong Y, Zhu DQ, Duan CF, Guan YF. Small-volume fiber-optic evanescent-wave absorption sensor for nitrite determination. Anal Bioanal Chem. 2010;396(2):943–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Lijinsky W, Epstein SS. N-Nitrosamines as environmental carcinogens. Nature. 1970;225(5227):21–3.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Wang QH, Yu LJ, Liu Y, Lin L, Lu RG, Zhu JP, et al. Methods for the detection and determination of nitrite and nitrate: a review. Talanta. 2017;165:709–20.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Yue R, Lu Q, Zhou YK. A novel nitrite biosensor based on single-layer graphene nanoplatelet-protein composite film. Biosens Bioelectron. 2011;26(11):4436–41.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Haldorai Y, Hwang SK, Gopalan AI, Huh YS, Han YK, Voit W, et al. Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor. Biosens Bioelectron. 2016;79:543–52.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Møller JKS, Skibsted LH. Nitric oxide and myoglobins. Chem Rev. 2002;102(4):1167–78.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Yao M, Roberts DD, Isenberg JS. Thrombospondin-1 inhibition of vascular smooth muscle cell responses occurs via modulation of both cAMP and cGMP. Pharmacol Res. 2011;63(1):13–22.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Sheu JR, Hung WC, Su CH, Lin CH, Lee LW, Lee YM, et al. The antiplatelet activity of Escherichia coli lipopolysaccharide is mediated through a nitric oxide/cyclic GMP pathway. Eur J Haematol. 1999;62(5):317–26.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang HM, Kang SH, Wang GZ, Zhang YX, Zhao HJ. Fluorescence determination of nitrite in water using prawn-shell derived nitrogen-doped carbon nanodots as fluorophores. ACS Sensors. 2016;1(7):875–81.CrossRefGoogle Scholar
  12. 12.
    Ghanei-Motlagh M, Taher MA. A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing. Biosens Bioelectron. 2018;109:279–85.PubMedCrossRefGoogle Scholar
  13. 13.
    Miao P, Shen M, Ning LM, Chen GF, Yin YM. Functionalization of platinum nanoparticles for electrochemical detection of nitrite. Anal Bioanal Chem. 2011;399(7):2407–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Yin XX, Chen QF, Song HL, Yang M, Wang HY. Sensitive and selective electrochemiluminescent detection of nitrite using dual-stabilizer-capped CdTe quantum dots. Electrochem Commun. 2013;34:81–5.CrossRefGoogle Scholar
  15. 15.
    He LJ, Zhang KG, Wang CJ, Luo XL, Zhang SS. Effective indirect enrichment and determination of nitrite ion in water and biological samples using ionic liquid-dispersive liquid-liquid microextraction combined with high-performance liquid chromatography. J Chromatogr A. 2011;1218(23):3595–600.PubMedCrossRefGoogle Scholar
  16. 16.
    Zheng P, Kasani S, Shi X, Boryczka AE, Yang F, Tang H, et al. Detection of nitrite with a surface-enhanced Raman scattering sensor based on silver nanopyramid array. Anal Chim Acta. 2018;1040:158–65.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Brandao GC, Matos GD, Pereira RN, Ferreira SLC. Development of a simple method for the determination of nitrite and nitrate in groundwater by high-resolution continuum source electrothermal molecular absorption spectrometry. Anal Chim Acta. 2014;806:101–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Dong SC, Guan WJ, Lu C. Quantum dots in organo-modified layered double hydroxide framework-improved peroxynitrous acid chemiluminescence for nitrite sensing. Sensors Actuators B Chem. 2013;188:597–602.CrossRefGoogle Scholar
  19. 19.
    Kudr J, Richtera L, Xhaxhiu K, Hynek D, Heger Z, Zitka O, et al. Carbon dots based FRET for the detection of DNA damage. Biosens Bioelectron. 2017;92:133–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Shangguan J, Huang J, He D, He X, Wang K, Ye R, et al. Highly Fe3+-selective fluorescent nanoprobe based on ultrabright N/P codoped carbon dots and its application in biological samples. Anal Chem. 2017;89(14):7477–84.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chen X, Gong F, Cao Z, Zou W, Gu T. Highly cysteine-selective fluorescent nanoprobes based on ultrabright and directly synthesized carbon quantum dots. Anal Bioanal Chem. 2018;410(12):2961–70.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gao WL, Song HH, Wang X, Liu XQ, Pang XB, Zhou YM, et al. Carbon dots with red emission for sensing of Pt2+, Au3+, and Pd2+ and their bioapplications in vitro and in vivo. ACS Appl Mater Interfaces. 2018;10(1):1147–54.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Zhao L, Li HY, Xu Y, Liu HC, Zhou TY, Huang N, et al. Selective detection of copper ion in complex real samples based on nitrogen-doped carbon quantum dots. Anal Bioanal Chem. 2018;410(18):4301–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wen L, Diao HP, Chang HH, Wang HJ, Li TT, Wei WL. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensors Actuators B Chem. 2017;241:190–8.CrossRefGoogle Scholar
  25. 25.
    Chen J, Wei JS, Zhang P, Niu XQ, Zhao W, Zhu ZY, et al. Red-emissive carbon dots for fingerprints detection by spray method: coffee ring effect and unquenched fluorescence in drying process. ACS Appl Mater Interfaces. 2017;9(22):18429–33.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Vedamalai M, Periasamy AP, Wang CW, Tseng YT, Ho LC, Shih CC, et al. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale. 2014;6(21):13119–25.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Jiao Y, Gong XJ, Han H, Gao YF, W. Lu, Liu Y, et al. Facile synthesis of orange fluorescence carbon dots with excitation independent emission for pH sensing and cellular imaging. Anal Chim Acta 2018;1042:125–132.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Butler RN. Diazotization of heterocyclic primary amines. Chem Rev. 1975;75(2):241–57.CrossRefGoogle Scholar
  29. 29.
    Fanning AT, Bickford GR, Roberts TD. Preparation and diazotization of thioanthranilic acid. Chemistry of 4-oxo-3,4-dihydro-3,1,2-benzothiadiazine. J Am Chem Soc. 1972;94(24):8505–9.CrossRefGoogle Scholar
  30. 30.
    Friedman L, Logullo FM. Benzynes via aprotic diazotization of anthranilic acids: a convenient synthesis of triptycene and derivatives. J Am Chem Soc. 1963;85(10):1549.CrossRefGoogle Scholar
  31. 31.
    Bailey JE. Determination of unsulfonated aromatic amines in D & C Red No. 33 by the diazotization and coupling procedure followed by reversed-phase liquid chromatographic analysis. Anal Chem. 1985;57(1):189–96.PubMedCrossRefGoogle Scholar
  32. 32.
    Koukabi N, Otokesh S, Kolvari E, Amoozadeh A. Convenient and rapid diazotization and diazo coupling reaction via aryl diazonium nanomagnetic sulfate under solvent-free conditions at room temperature. Dyes Pigments. 2016;124:12–7.CrossRefGoogle Scholar
  33. 33.
    Kunduru KR, Basu A, Tsah T, Domb AJ. Polymer with pendant diazo-coupling functionality for colorimetric detection of nitrates. Sensors Actuators B Chem. 2017;251:21–6.CrossRefGoogle Scholar
  34. 34.
    Lei Z, Cole JM, Liu X. Tuning solvatochromism of azo dyes with intramolecular hydrogen bonding in solution and on titanium dioxide nanoparticles. J Phys Chem C. 2013;117(49):26316–23.CrossRefGoogle Scholar
  35. 35.
    Qiu JJ, Xiao JQ, Tang BT, Ju BZ, Zhang SF. Facile synthesis of novel disperse azo dyes with aromatic hydroxyl group. Dyes Pigments. 2019;160:524–9.CrossRefGoogle Scholar
  36. 36.
    Li Z, An ZZ, Guo YY, Zhang KN, Chen XL, Zhang DX, et al. Au-Pt bimetallic nanoparticles supported on functionalized nitrogen-doped graphene for sensitive detection of nitrite. Talanta. 2016;161:713–20.PubMedCrossRefGoogle Scholar
  37. 37.
    Viswanathan P, Ramaraj R. Bi-functional sensing capability of gold multi-pod network nanostructures towards nitrite and guanine. Sensors Actuators B Chem. 2018;270:56–63.CrossRefGoogle Scholar
  38. 38.
    Nam J, Jung IB, Kim B, Lee SM, Kim SE, Lee KN, et al. A colorimetric hydrogel biosensor for rapid detection of nitrite ions. Sensors Actuators B Chem. 2018;270:112–8.CrossRefGoogle Scholar
  39. 39.
    Wang BY, Wu ZL, Qin WD. Polyamidoamine dendrimer-armed fluorescent magnetic nanoparticles for sensitive and selective determination of nitrite in beverages. Sensors Actuators B Chem. 2017;247:774–9.CrossRefGoogle Scholar
  40. 40.
    Yang HR, Xiang Y, Guo XY, Wu YP, Wen Y, Yang HF. Diazo-reaction-based SERS substrates for detection of nitrite in saliva. Sensors Actuators B Chem. 2018;271:118–21.CrossRefGoogle Scholar
  41. 41.
    Lin Z, Xue W, Chen H, Lin JM. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem. 2011;83(21):8245–51.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Chemical EngineeringNorthwest UniversityXi’anChina
  2. 2.College of Food Science and TechnologyNorthwest UniversityXi’anChina
  3. 3.Shangluo UniversityShangluoChina

Personalised recommendations