Advertisement

Annotation and quantification of N-acyl homoserine lactones implied in bacterial quorum sensing by supercritical-fluid chromatography coupled with high-resolution mass spectrometry

  • Thi Phuong Thuy Hoang
  • Morgane Barthélemy
  • Raphaël Lami
  • Didier Stien
  • Véronique Eparvier
  • David TouboulEmail author
Research Paper
Part of the following topical collections:
  1. Current Progress in Lipidomics

Abstract

In recent years, use of supercritical-fluid chromatography (SFC) with CO2 as the mobile phase has been expanding in the research laboratory and industry since it is considered to be a green analytical method. This technique offers numerous advantages, such as good separation and sensitive detection, short analysis times, and stability of analytes. In this study, a method for quantification of N-acyl homoserine lactones (AHLs), signaling molecules responsible for cell-to-cell communication initially discovered in bacteria, by SFC coupled with high-resolution mass spectrometry (HRMS) was developed. The SFC conditions and MS ionization settings were optimized to obtain the best separation and greatest sensitivity. The optimal analysis conditions allowed quantification of up to 30 AHLs in a single run within 16 min with excellent linearity (R2 > 0.998) and sensitivity (picogram level). This method was then applied to study AHL production by one Gram-negative endophytic bacterium, Paraburkholderia sp. BSNB-0670. Nineteen known AHLs were detected, and nine abundant HSLs were quantified. To further investigate the production of uncommon AHLs, a molecular networking approach was applied on the basis of the SFC–HRMS/MS data. This led to additional identification of four unknown AHLs annotated as N-3-hydroxydodecanoylol homoserine lactone, N-3-hydroxydodecadienoyl homoserine lactone, and N-3-oxododecenoyl homoserine lactones (two isomers).

Keywords

Supercritical-fluid chromatography N-Acyl homoserine lactone Quorum sensing Quantification Molecular networking 

Notes

Acknowledgements

This work was supported by the Agence Nationale de la Recherche (grant ANR-16-CE29-0002-01 CAP-SFC-MS), an Investissement d’Avenir grant managed by Agence Nationale de la Recherche (CEBA, ref ANR-10-LABX-25-01), a joint Agence Nationale de la Recherche and Swiss National Science Foundation (SNF) grant (SECIL, reference ANR-15-CE21-0016 and SNF no. 310030E-164289), and a grant from Région Ile-de-France (DIM Analytics).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2019_2265_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1607 kb)

References

  1. 1.
    Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology. 2007;153(Pt 12):3923–38.CrossRefGoogle Scholar
  2. 2.
    Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994;176(2):269–75.CrossRefGoogle Scholar
  3. 3.
    Williams P, Winzer K, Chan W, Cámara M. Look who's talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc B. 2007;362(1483):1119–34.CrossRefGoogle Scholar
  4. 4.
    von Bodman SB, Willey JM, Diggle SP. Cell-cell communication in bacteria: united we stand. J Bacteriol. 2008;190(13):4377–91.CrossRefGoogle Scholar
  5. 5.
    González JF, Venturi VT. A novel widespread interkingdom signaling circuit. Trends Plant Sci. 2013;18(3):167–74.CrossRefGoogle Scholar
  6. 6.
    Sperandio V. Novel approaches to bacterial infection therapy by interfering with bacteria-to-bacteria signaling. Expert Rev Anti-Infect Ther. 2007;5(2):271–6.CrossRefGoogle Scholar
  7. 7.
    Càmara M, Daykin M, Chhabra SR. Detection, purification, and synthesis of N-acyl homoserine lactone quorum sensing signal molecules. Methods Microbiol. 1998;27:319–30.CrossRefGoogle Scholar
  8. 8.
    Doberva M, Stien D, Sorres J, Hue N, Sanchez-Ferandin S, Eparvier V, et al. Large diversity and original structures of acyl-homoserine lactones in strain MOLA 401, a marine Rhodobacteraceae bacterium. Front Microbiol. 2017;8:1152.CrossRefGoogle Scholar
  9. 9.
    Wang Y, Zhang X, Wang C, Fu L, Yi Y, Zhang Y. Identification and quantification of acylated homoserine lactones in Shewanella baltica, the specific spoilage organism of Pseudosciaena crocea, by ultrahigh-performance liquid chromatography coupled to triple quadrupole mass spectrometry. J Agric Food Chem. 2017;65(23):4804–10.CrossRefGoogle Scholar
  10. 10.
    Patel NM, Moore JD, Blackwell HE, Amador-Noguez D. Identification of unanticipated and novel N-Acyl L-Homoserine Lactones (AHLs) using a sensitive non-targeted LC-MS/MS method. PLoS One. 2016;11(10):e0163469.CrossRefGoogle Scholar
  11. 11.
    Steindler L, Venturi V. Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett. 2007;266(1):1–9.CrossRefGoogle Scholar
  12. 12.
    Cataldi TR, Bianco G, Frommberger M, Schmitt-Kopplin P. Direct analysis of selected N-acyl-L-homoserine lactones by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2004;18(12):1341–4.CrossRefGoogle Scholar
  13. 13.
    Charlton TS, de Nys R, Netting A, Kumar N, Hentzer M, Givskov M, et al. A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol. 2000;2(5):530–41.CrossRefGoogle Scholar
  14. 14.
    Frommberger M, Hertkorn N, Englmann M, Jakoby S, Hartmann A, Kettrup A, et al. Analysis of N-acylhomoserine lactones after alkaline hydrolysis and anion-exchange solid-phase extraction by capillary zone electrophoresis-mass spectrometry. Electrophoresis. 2005;26(7-8):1523–32.CrossRefGoogle Scholar
  15. 15.
    Ortori CA, Dubern JF, Chhabra SR, Cámara M, Hardie K, Williams P, et al. Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Anal Bioanal Chem. 2011;399(2):839–50.CrossRefGoogle Scholar
  16. 16.
    Purohit AA, Johansen JA, Hansen H, Leiros HK, Kashulin A, Karlsen C, et al. Presence of acyl-homoserine lactones in 57 members of the Vibrionaceae family. J Appl Microbiol. 2013;115(3):835–47.CrossRefGoogle Scholar
  17. 17.
    Leipert J, Treitz C, Leippe M, Tholey A. Identification and quantification of N-acyl homoserine lactones involved in bacterial communication by small-scale synthesis of internal standards and matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2017;28(12):2538–47.CrossRefGoogle Scholar
  18. 18.
    Laboureur L, Bonneau N, Champy P, Brunelle A, Touboul D. Structural characterisation of acetogenins from Annona muricata by supercritical fluid chromatography coupled to high-resolution tandem mass spectrometry. Phytochem Anal. 2017;28(6):512–20.CrossRefGoogle Scholar
  19. 19.
    He PX, Zhang Y, Zhou Y, Li GH, Zhang JW, Feng XS, et al. Analyst. 2019.Google Scholar
  20. 20.
    West C. Current trends in supercritical fluid chromatography. Anal Bioanal Chem. 2018;410(25):6441–57.CrossRefGoogle Scholar
  21. 21.
    Liu LX, Zhang Y, Zhou Y, Li GH, Yang GJ, Feng XS. The application of supercritical fluid chromatography in food quality and food safety: an overview. Crit Rev Anal Chem. 2019:1–25.Google Scholar
  22. 22.
    Barthélemy M, Elie N, Pellissier L, Wolfender JL, Stien D, Touboul D, et al. Structural identification of antibacterial lipids from Amazonian palm tree endophytes through the molecular network approach. Int J Mol Sci. 2019;20(8):E2006.CrossRefGoogle Scholar
  23. 23.
    Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinf. 2010;11:395.CrossRefGoogle Scholar
  24. 24.
    Myers OD, Sumner SJ, Li S, Barnes S, Du X. One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: new algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Anal Chem. 2017;89(17):8696–703.CrossRefGoogle Scholar
  25. 25.
    Olivon F, Elie N, Grelier G, Roussi F, Litaudon M, Touboul D. MetGem software for the generation of molecular networks based on the t-SNE algorithm. Anal Chem. 2018;90(23):13900–8.CrossRefGoogle Scholar
  26. 26.
    MacDougall D, Amore FJ, Cox GV, Crosby DG, Estes FL, Freeman DH, et al. Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal Chem. 1980;52:2242–9.CrossRefGoogle Scholar
  27. 27.
    West C, Lesellier E. Orthogonal screening system of columns for supercritical fluid chromatography. J Chromatogr A. 2008;1203(1):105–13.CrossRefGoogle Scholar
  28. 28.
    Riddell N, Bavel B, Jogsten IE, McCrindle R, McAlees A, Chittim B. Coupling supercritical fluid chromatography to positive ion atmospheric pressure ionization mass spectrometry: ionization optimization of halogenated environmental contaminants. Int J Mass Spectrom. 2017;421:156–63.CrossRefGoogle Scholar
  29. 29.
    Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet. 2014;5:429.CrossRefGoogle Scholar
  30. 30.
    Coenye T, Vandamme P. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol. 2003;5(9):719–29.CrossRefGoogle Scholar
  31. 31.
    Suárez-Moreno ZR, Caballero-Mellado J, Venturi V. The new group of non-pathogenic plant-associated nitrogen-fixing Burkholderia spp. shares a conserved quorum-sensing system, which is tightly regulated by the RsaL repressor. Microbiology. 2008;154(Pt 7):2048–59.CrossRefGoogle Scholar
  32. 32.
    Coutinho BG, Mitter B, Talbi C, Sessitsch A, Bedmar EJ, Halliday N, et al. Regulon studies and in planta role of the BraI/R quorum-sensing system in the plant-beneficial Burkholderia cluster. Appl Environ Microbiol. 2013;79(14):4421–32.CrossRefGoogle Scholar
  33. 33.
    Krick A, Kehraus S, Eberl L, Riedel K, Anke H, Kaesler I, et al. A marine Mesorhizobium sp. produces structurally novel long-chain N-acyl-L-homoserine lactone. Appl Environ Microbiol. 2007;73(11):3587–94.CrossRefGoogle Scholar
  34. 34.
    DiMango E, Zar HJ, Bryan R, Prince A. Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J Clin Investig. 1995;96(5):2204–10.CrossRefGoogle Scholar
  35. 35.
    Smith RS, Kelly R, Iglewski BH, Phipps RP. The Pseudomonas autoinducer N-(3-oxododecanoyl) homoserine lactone induces cyclooxygenase-2 and prostaglandin E2 production in human lung fibroblasts: implications for inflammation. J Immunol. 2002;169(5):2636–42.CrossRefGoogle Scholar
  36. 36.
    Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC, et al. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun. 2003;71(10):5785–93.CrossRefGoogle Scholar
  37. 37.
    Horikawa M, Tateda K, Tuzuki E, Ishii Y, Ueda C, Takabatake T, et al. Synthesis of Pseudomonas quorum-sensing autoinducer analogs and structural entities required for induction of apoptosis in macrophages. Bioorg Med Chem Lett. 2006;16(8):2130–3.CrossRefGoogle Scholar
  38. 38.
    Le Balc’h E, Landman C, Tauziet E, Brot L, Quevrain E, Rainteau D et al.. 3-oxo-C12:2-HSL, a new N-acyl-homoserine lactone identified in gut ecosystem exerts an anti-inflammatory effect and does not modify paracellular permeability. The 12th Congress of ECCO – European Crohn’s and Colitis Organisation; 2017; Barcelona.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris‐Sud, Université Paris-SaclayAvenue de la TerrasseGif-sur-YvetteFrance
  2. 2.Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique de Banyuls-sur-MerBanyuls-sur-MerFrance

Personalised recommendations