Unraveling a self-assembling mechanism of isomeric aminothiophenol on Ag dendrite by correlated SERS and matrix-free LDI-MS

  • Yankai Ma
  • Bei NieEmail author
Research Paper


Correlated spectroscopic analysis can provide complementary chemical insights that are often unattainable by either approach used in isolation. We distinguished the different self-assembling behavior of isomeric aminothiophenols (ATPs) on Ag dendrite by the correlation of surface-enhanced Raman spectroscopy and laser-induced desorption ionization mass spectrometry, demonstrating that steric effect impinged significantly upon surface molecular density and plasmon-driven catalytic reaction yield, which led to drastic variations in the resulting SERS spectra. The correlative measurement shows that ortho-substitute barely formed a self-assemble monolayer, relative to the para-isomer, which can form a close-packed self-assembled monolayer and perform a decent azo-coupling reaction. Comparison between normal and SERS spectra of ATP isomers supports the fact that additional disulfide- or hydrogen-bonding interactions are established in para-ATP solid crystal, but neither of ortho- nor meta-isomers. This work is expected to create a significant impact on the development of an orthogonally correlated spectroscopic tool in deciphering chemical insights and underlying reaction mechanism.

Graphical abstract


Correlative spectroscopy Self-assembling monolayer Aminothiophenol Surface-enhanced Raman scattering Laser-induced desorption ionization mass spectrometry 





Self-assembling monolayer


Surface-enhanced Raman spectroscopy


Matrix-assisted laser desorption ionization-time of flight


Laser-induced desorption ionization mass spectrometry


Confocal Raman microscopy


Second ion mass spectrometer




Normal Raman spectrum


Transient negative ion


Funding information

This work was supported by South-central University of Nationalities Start-up funds under Grant YZZ16004 and China Central University Administration under Grant CZZ18002.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_2187_MOESM1_ESM.pdf (303 kb)
ESM 1 (PDF 302 kb)


  1. 1.
    Roussel TJ, Vega LF. Modeling the self-assembly of nano objects: applications to supramolecular organic monolayers adsorbed on metal surfaces. J Chem Theory Comput. 2013;9:2161–9.CrossRefGoogle Scholar
  2. 2.
    Fichman G, Adler-Abramovich L, Manohar S, Mironi-Harpaz I, Guterman T, Seliktar D, et al. Seamless metallic coating and surface adhesion of self-assembled bioinspired nanostructures based on Di-(3,4-dihydroxy-l-phenylalanine) peptide motif. ACS Nano. 2014;8:7220–8.CrossRefGoogle Scholar
  3. 3.
    Chen W, Fang X, Li H, Cao H, Kong J. DNA-mediated inhibition of peroxidase-like activities on platinum nanoparticles for simple and rapid colorimetric detection of nucleic acids. Biosens Bioelectron. 2017;94:169–75.CrossRefGoogle Scholar
  4. 4.
    Rittich J, Jung S, Meyer D, Jodocy C, Wuttig M. Surface modifications by self-assembled monolayers to improve organic opto-electronic devices. Ency Int C. 2018:835–41.Google Scholar
  5. 5.
    Xi W, Shrestha BK, Haes AJ. Promoting intra and intermolecular interactions in surface enhanced Raman scattering (SERS). Anal Chem. 2017;90:128–35.CrossRefGoogle Scholar
  6. 6.
    Bouyanfif A, Liyanage S, Hequet E, Moustaid-Moussa N, Abidi N. Review of FTIR microspectroscopy applications to investigate biochemical changes in C. elegans. Vib Spectrosc. 2018;96:74–82.CrossRefGoogle Scholar
  7. 7.
    Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60:2299–301.CrossRefGoogle Scholar
  8. 8.
    Pham XH, Lee M, Shim S, Jeong S, Jun BH. Highly sensitive and reliable SERS probes based on nanogap control of a Au–Ag alloy on silica nanoparticles. RSC Adv. 2017;7:7015–21.CrossRefGoogle Scholar
  9. 9.
    Li Z, Chu LQ, Sweedler JV, Bohn PW. Spatial correlation of confocal Raman scattering and secondary ion mass spectrometric molecular images of lignocellulosic materials. Anal Chem. 2010;82:2608–11.CrossRefGoogle Scholar
  10. 10.
    Pham XH, Hahm E, Kang E, Son BS, Ha Y, Kim HM, et al. Control of silver coating on Raman label incorporated gold nanoparticles assembled silica nanoparticles. Int J Mol Sci. 2019;20:1258–71.CrossRefGoogle Scholar
  11. 11.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997;78:1667–70.CrossRefGoogle Scholar
  12. 12.
    Alvarez-Puebla RA, Liz-Marzán LM. Traps and cages for universal SERS detection. Chem Soc Rev. 2011;41:43–51.CrossRefGoogle Scholar
  13. 13.
    Le Naour F, Bralet MP, Debois D, Sandt C, Guettier C, Dumas P, et al. Chemical imaging on liver steatosis using synchrotron infrared and ToF-SIMS microspectroscopies. PLoS One. 2009;4.Google Scholar
  14. 14.
    Ahlf DR, Masyuko RN, Hummon AB, Bohn PW. Correlated mass spectrometry imaging and confocal Raman microscopy for studies of three-dimensional cell culture sections. Analyst. 2014;139:4578–85.CrossRefGoogle Scholar
  15. 15.
    Baig NF, Dunham SJB, Morales-Soto N, Shrout JD, Sweedler JV, Bohn PW. Multimodal chemical imaging of molecular messengers in emerging pseudomonas aeruginosa bacterial communities. Analyst. 2015;140:6544–52.CrossRefGoogle Scholar
  16. 16.
    Masyuko RN, Lanni EJ, Driscoll CM, Shrout JD, Sweedler JV, Bohn PW. Spatial organization of pseudomonas aeruginosa biofilms probed by combined matrix-assisted laser desorption ionization mass spectrometry and confocal Raman microscopy. Analyst. 2014;139:6058–60.CrossRefGoogle Scholar
  17. 17.
    Nie B, Masyuko RN, Bohn PW. Correlation of surface-enhanced Raman spectroscopy and laser desorption-ionization mass spectrometry acquired from silver nanoparticle substrates. Analyst. 2012;137:1421–7.CrossRefGoogle Scholar
  18. 18.
    E M, H Y, S SK, S CM, D H, S S. SERS not to be taken for granted in the presence of oxygen. J Am Chem Soc. 2009;131:7480–1.Google Scholar
  19. 19.
    Perry DA, Cordova JS, Smith LG, Son HJ, Biris AS. Characterization of aminophenol isomer adsorption on silver nanostructures. Vib Spectrosc. 2011;55:77–84.CrossRefGoogle Scholar
  20. 20.
    Tiwari ANR, Ming YL, Kulkarni S, Yan F. Study of adsorption behavior of aminothiophenols on gold nanorods using surface-enhanced Raman spectroscopy. J Nanophotonics. 2011;5:1–13.CrossRefGoogle Scholar
  21. 21.
    Lee M. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86:3391–5.CrossRefGoogle Scholar
  22. 22.
    Camargo PHC, Rycenga M, Au L, Xia Y. Isolating and probing the hot spot formed between two silver nanocubes. Angew Chem. 2010;48:2180–4.CrossRefGoogle Scholar
  23. 23.
    Kurouski D, Postiglione T, Deckertgaudig T, Deckert V, Lednev IK. Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. Analyst. 2013;138:1665–73.CrossRefGoogle Scholar
  24. 24.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys Rev Lett. 2004;92:096101.CrossRefGoogle Scholar
  25. 25.
    Wang CG, Chen Y, Wang TT, Ma ZF, Su ZM. Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing. Adv Funct Mater. 2008;18:355–61.CrossRefGoogle Scholar
  26. 26.
    Cohen LH, Gusev AI. Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem. 2002;373:571–86.CrossRefGoogle Scholar
  27. 27.
    Kim K, Choi JY, Shin KS. Enhanced Raman scattering in gaps formed by planar Au and Au/Ag alloy nanoparticles. J Phys Chem C. 2013;117:11421–7.CrossRefGoogle Scholar
  28. 28.
    Chowdhury MH, Chakraborty S, Lakowicz JR, Ray K. Feasibility of using bimetallic plasmonic nanostructures to enhance the intrinsic emission of biomolecules. J Phys Chem C. 2011;115:16879.CrossRefGoogle Scholar
  29. 29.
    Zhang J, Chen PC, Yuan BK, Ji W, Cheng ZH, Qiu XH. Real-space identification of intermolecular bonding with atomic force microscopy. Science. 2013;342:611–4.CrossRefGoogle Scholar
  30. 30.
    Kim HJ, Yoon JH, Yoon S. Photooxidative coupling of thiophenol derivatives to disulfides. J Phys Chem A. 2010;114:12010–5.CrossRefGoogle Scholar
  31. 31.
    Damme RV, Zeegers HT. Intermolecular stretching vibration of hydrogen bonds involving a sulfur atom. Adv Mole Relax Int Proc. 1980;16:15–28.CrossRefGoogle Scholar
  32. 32.
    Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ. When the signal is not from the oiginal molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J Am Chem Soc. 2010;132:9244–6.CrossRefGoogle Scholar
  33. 33.
    Ling Y, Xie WC, Liu GK, Yan RW, Wu DY, Tang J. The discovery of the hydrogen bond from p-nitrothiophenol by Raman spectroscopy: guideline for the thioalcohol molecule recognition tool. Sci Rep. 2016;6:31981–6.CrossRefGoogle Scholar
  34. 34.
    Zhang Q, Wang H. Mechanistic insights on plasmon driven photocatalytic oxidative coupling of thiophenol derivatives: evidence for steady-state photoactivated oxygen. J Phys Chem C. 2018;122:5686–97.CrossRefGoogle Scholar
  35. 35.
    Wei X, Bernd W, Sebastian S. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J Am Chem Soc. 2013;135:1657–60.CrossRefGoogle Scholar
  36. 36.
    Batz V, Schneeweiss MA, Kramer D, Hagenström H, Kolb DM, Mandler D. Electrochemistry and structure of the isomers of aminothiophenol adsorbed on gold. J Electroanal Chem. 2000;491:55–68.CrossRefGoogle Scholar
  37. 37.
    Kahl M, Voges E, Kostrewa S, Viets C, Hill W. Periodically structured metallic substrates for SERS. Sensors Actuators B Chem. 1998;51:285–91.CrossRefGoogle Scholar
  38. 38.
    Dastan D, Londhe PU, Chaure NB. Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method. J Mater Sci Mater Electron. 2014;25:3473–9.CrossRefGoogle Scholar
  39. 39.
    Dhirani A-A, Zehner RW, Hsung RP, Guyot-Sionnest P, Sita LR. Self-assembly of conjugated molecular rods: a high resolution STM study. J Am Chem Soc. 1996;118:3319–20.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Material ScienceSouth Central University of NationalitiesWuhanChina
  2. 2.Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingChina

Personalised recommendations