Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 28, pp 7399–7408 | Cite as

Characterization of fuel gases with fiber-enhanced Raman spectroscopy

  • Anne Sieburg
  • Andreas Knebl
  • Jikku M. Jacob
  • Torsten FroschEmail author
Research Paper
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry

Abstract

Common gaseous fuels are mixtures of several components. As the properties of the fuels can vary with the composition, but combustion needs to be stable, reliable analytical methods are highly sought after. Raman spectroscopic methods have proved their suitability for the characterization of diverse gaseous mixtures. They have the potential to overcome existing limitations of established technologies, since they are fast, non-consumptive, and accurate. Here, we demonstrate a gas sensor based on fiber-enhanced Raman spectroscopy (FERS) for fuel gas monitoring. Online detection of all gas components, including alkanes, carbon dioxide (CO2), nitrogen (N2), and hydrogen sulfide (H2S), for varying concentration ranges from tens of vol% down to the ppm level enables a comprehensive characterization of the fuels. The developed sensor system features a pinhole assembly which sufficiently reduces the background signal from the fiber to enable the detection of C2–C4 alkanes occurring in low concentrations. Detection limits in the low ppm region were achieved for the minor components of fuel gases, which allow the online monitoring of necessary purification steps, e.g., for biogas. The obtained results indicate that fiber-enhanced Raman sensors have the potential for comprehensive online and onsite gas sensing for fuel gas quality control.

Graphical abstract

Keywords

Raman spectroscopy Fiber sensor Hollow core photonic crystal fiber Fuel gas Sensing Natural gas Biogas 

Notes

Funding information

Funding was from the German Federal Ministry for Education and Research BMBF (03WKCV03E) and the Deutsche Forschungsgemeinschaft (DFG: CRC 1076 AquaDiva).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_2145_MOESM1_ESM.pdf (250 kb)
ESM 1 (PDF 249 kb)

References

  1. 1.
    Abatzoglou N, Boivin S. A review of biogas purification processes. Biofuels Bioprod Biorefin. 2009;3(1):42–71.  https://doi.org/10.1002/bbb.117.CrossRefGoogle Scholar
  2. 2.
    Al Mamun MR, Torii S. Enhancement of methane concentration by removing contaminants from biogas mixtures using combined method of absorption and adsorption. Int J Chem Eng. 2017:1–9.  https://doi.org/10.1155/2017/7906859.CrossRefGoogle Scholar
  3. 3.
    Berger R, Bothendorf E, Klinkert V, Meyer-Prescher B (2010) Gasnetze der Zukunft: Studie zu den Auswirkungen der Biogaseinspeisung in das Erdgasnetz auf den Netzbetrieb und Endverbraucher. Fraunhofer-Verlag.Google Scholar
  4. 4.
    Bogozi T, Popp J, Frosch T. Fiber-enhanced Raman multi-gas spectroscopy: what is the potential of its application to breath analysis? Bioanalysis. 2015;7(3):281–4.  https://doi.org/10.4155/bio.14.299.CrossRefPubMedGoogle Scholar
  5. 5.
    Bruckner M, Becker K, Popp J, Frosch T. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells. Anal Chim Acta. 2015;894:76–84.  https://doi.org/10.1016/j.aca.2015.08.025.CrossRefPubMedGoogle Scholar
  6. 6.
    Demtröder W. Laser Raman spectroscopy. In: Laser spectroscopy: basic concepts and instrumentation. Berlin Heidelberg: Springer; 2003. p. 499–530.  https://doi.org/10.1007/978-3-662-05155-9_8.CrossRefGoogle Scholar
  7. 7.
    Deublein D, Steinhauser A. Biogas from waste and renewable resources: an introduction. Wiley; 2011.Google Scholar
  8. 8.
    Domes C, Domes R, Popp J, Pletz MW, Frosch T. Ultrasensitive detection of antiseptic antibiotics in aqueous media and human urine using deep UV resonance Raman spectroscopy. Anal Chem. 2017;89(18):9997–10003.  https://doi.org/10.1021/acs.analchem.7b02422.CrossRefPubMedGoogle Scholar
  9. 9.
    Domes R, Domes C, Albert CR, Bringmann G, Popp J, Frosch T. Vibrational spectroscopic characterization of arylisoquinolines by means of Raman spectroscopy and density functional theory calculations. Phys Chem Chem Phys. 2017;19(44):29918–26.  https://doi.org/10.1039/c7cp05415g.CrossRefPubMedGoogle Scholar
  10. 10.
    Eichmann SC, Kiefer J, Benz J, Kempf T, Leipertz A, Seeger T. Determination of gas composition in a biogas plant using a Raman-based sensor system. Meas Sci Technol. 2014;25(7):075503.CrossRefGoogle Scholar
  11. 11.
    Faramawy S, Zaki T, Sakr AAE. Natural gas origin, composition, and processing: a review. J Nat Gas Sci Eng. 2016;34:34–54.  https://doi.org/10.1016/j.jngse.2016.06.030.CrossRefGoogle Scholar
  12. 12.
    Friss AJ, Limbach CM, Yalin AP. Cavity-enhanced rotational Raman scattering in gases using a 20 mW near-infrared fiber laser. Opt Lett. 2016;41(14):3193–6.  https://doi.org/10.1364/OL.41.003193.CrossRefPubMedGoogle Scholar
  13. 13.
    Frosch T, Popp J. Structural analysis of the antimalarial drug halofantrine by means of Raman spectroscopy and density functional theory calculations. J Biomed Opt. 2010;15(4):041516.  https://doi.org/10.1117/1.3432656.CrossRefPubMedGoogle Scholar
  14. 14.
    Frosch T, Meyer T, Schmitt M, Popp J. Device for Raman difference spectroscopy. Anal Chem. 2007;79(16):6159–66.  https://doi.org/10.1021/ac070440+.CrossRefPubMedGoogle Scholar
  15. 15.
    Frosch T, Chan KL, Wong HC, Cabral JT, Kazarian SG. Nondestructive three-dimensional analysis of layered polymer structures with chemical imaging. Langmuir. 2010;26(24):19027–32.  https://doi.org/10.1021/la103683h.CrossRefPubMedGoogle Scholar
  16. 16.
    George DL, Bowles EB. Shale gas measurement and associated issues. Pipeline Gas J. 2011;238(7).Google Scholar
  17. 17.
    Glindkamp A, Riechers D, Rehbock C, Hitzmann B, Scheper T, Reardon KF. Sensors in disposable bioreactors status and trends. Adv Biochem Eng Biotechnol. 2009;115:145–69.  https://doi.org/10.1007/10_2009_10.CrossRefPubMedGoogle Scholar
  18. 18.
    Hanf S, Keiner R, Yan D, Popp J, Frosch T. Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis. Anal Chem. 2014;86(11):5278–85.  https://doi.org/10.1021/ac404162w.CrossRefPubMedGoogle Scholar
  19. 19.
    Hanf S, Fischer S, Hartmann H, Keiner R, Trumbore S, Popp J, et al. Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry. Analyst. 2015;140(13):4473–81.  https://doi.org/10.1039/c5an00402k.CrossRefPubMedGoogle Scholar
  20. 20.
    Hanf S, Bogozi T, Keiner R, Frosch T, Popp J. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath. Anal Chem. 2015;87(2):982–8.  https://doi.org/10.1021/ac503450y.CrossRefPubMedGoogle Scholar
  21. 21.
    Hansen SB, Berg RW, Stenby EH. High-pressure measuring cell for Raman spectroscopic studies of natural gas. Appl Spectrosc. 2001;55(1):55–60.  https://doi.org/10.1366/0003702011951434.CrossRefGoogle Scholar
  22. 22.
    Herzberg G. Infrared and Raman spectra of polyatomic molecules. New York: D. Van Nostrand Company; 1945.Google Scholar
  23. 23.
    Hippler M. Cavity-enhanced Raman spectroscopy of natural gas with optical feedback cw-diode lasers. Anal Chem. 2015;87(15):7803–9.  https://doi.org/10.1021/acs.analchem.5b01462.CrossRefPubMedGoogle Scholar
  24. 24.
    James TM, Rupp S, Telle HH. Trace gas and dynamic process monitoring by Raman spectroscopy in metal-coated hollow glass fibres. Anal Methods. 2015;7(6):2568–76.  https://doi.org/10.1039/c4ay02597k.CrossRefGoogle Scholar
  25. 25.
    Jochum T, Michalzik B, Bachmann A, Popp J, Frosch T. Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy. Analyst. 2015;140(9):3143–9.  https://doi.org/10.1039/c5an00091b.CrossRefPubMedGoogle Scholar
  26. 26.
    Jochum T, von Fischer JC, Trumbore S, Popp J, Frosch T. Multigas leakage correction in static environmental chambers using sulfur hexafluoride and Raman spectroscopy. Anal Chem. 2015;87(21):11137–42.  https://doi.org/10.1021/acs.analchem.5b03312.CrossRefPubMedGoogle Scholar
  27. 27.
    Jochum T, Rahal L, Suckert RJ, Popp J, Frosch T. All-in-one: a versatile gas sensor based on fiber enhanced Raman spectroscopy for monitoring postharvest fruit conservation and ripening. Analyst. 2016;141(6):2023–9.  https://doi.org/10.1039/c5an02120k.CrossRefPubMedGoogle Scholar
  28. 28.
    Jochum T, Fastnacht A, Trumbore SE, Popp J, Frosch T. Direct Raman spectroscopic measurements of biological nitrogen fixation under natural conditions: an analytical approach for studying nitrogenase activity. Anal Chem. 2017;89(2):1117–22.  https://doi.org/10.1021/acs.analchem.6b03101.CrossRefPubMedGoogle Scholar
  29. 29.
    Keiner R, Herrmann M, Kusel K, Popp J, Frosch T. Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing. Anal Chim Acta. 2015;864:39–47.  https://doi.org/10.1016/j.aca.2015.02.007.CrossRefPubMedGoogle Scholar
  30. 30.
    Keiner R, Gruselle MC, Michalzik B, Popp J, Frosch T. Raman spectroscopic investigation of 13CO 2 labeling and leaf dark respiration of Fagus sylvatica L. (European beech). Anal Bioanal Chem. 2015;407(7):1813–7.  https://doi.org/10.1007/s00216-014-8446-8.CrossRefPubMedGoogle Scholar
  31. 31.
    Kiefer J. Recent advances in the characterization of gaseous and liquid fuels by vibrational spectroscopy. Energies. 2015;8(4):3165–97.CrossRefGoogle Scholar
  32. 32.
    Kiefer J, Seeger T, Steuer S, Schorsch S, Weikl MC, Leipertz A. Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant. Meas Sci Technol. 2008;19(8):085408.CrossRefGoogle Scholar
  33. 33.
    Knebl A, Yan D, Popp J, Frosch T. Fiber enhanced Raman gas spectroscopy. TrAC Trends Anal Chem. 2017;103:230–8.  https://doi.org/10.1016/j.trac.2017.12.001.CrossRefGoogle Scholar
  34. 34.
    Knebl A, Domes R, Yan D, Popp J, Trumbore S, Frosch T. Fiber-enhanced Raman gas spectroscopy for 18O–13C-labeling experiments. Anal Chem. 2019;91(12):7562–9.  https://doi.org/10.1021/acs.analchem.8b05684.CrossRefPubMedGoogle Scholar
  35. 35.
    Leicher J, Giese A, Görner K, Werschy M, Krause H, Dörr H. Natural gas quality fluctuations – surveys and statistics on the situation in Germany. Energy Procedia. 2017;120:165–72.  https://doi.org/10.1016/j.egypro.2017.07.161.CrossRefGoogle Scholar
  36. 36.
    Li XY, Xia YX, Huang JM, Zhan L. A Raman system for multi-gas-species analysis in power transformer. Appl Phys B Lasers Opt. 2008;93(2–3):665–9.  https://doi.org/10.1007/s00340-008-3170-8.CrossRefGoogle Scholar
  37. 37.
    Long DA. The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Wiley. 2002.  https://doi.org/10.1002/0470845767.
  38. 38.
    Markin AV, Markina NE, Goryacheva IY. Raman spectroscopy based analysis inside photonic-crystal fibers. TrAC Trends Anal Chem. 2017;88:185–97.  https://doi.org/10.1016/j.trac.2017.01.003.CrossRefGoogle Scholar
  39. 39.
    Mazyan W, Ahmadi A, Ahmed H, Hoorfar M. Market and technology assessment of natural gas processing: a review. J Nat Gas Sci Eng. 2016;30:487–514.  https://doi.org/10.1016/j.jngse.2016.02.010.CrossRefGoogle Scholar
  40. 40.
    McCreery RL. Raman spectroscopy for chemical analysis. Wiley; 2000.Google Scholar
  41. 41.
    Petrov DV. Raman spectrum of methane in nitrogen, carbon dioxide, hydrogen, ethane, and propane environments. Spectrochim Acta A Mol Biomol Spectrosc. 2018;191:573–8.  https://doi.org/10.1016/j.saa.2017.10.058.CrossRefPubMedGoogle Scholar
  42. 42.
    Qian Y, Sun SZ, Ju DH, Shan XX, Lu XC. Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines. Renew Sust Energ Rev. 2017;69:50–8.  https://doi.org/10.1016/j.rser.2016.11.059.CrossRefGoogle Scholar
  43. 43.
    Rupp S, Off A, Seitz-Moskaliuk H, James TM, Telle HH. Improving the detection limit in a capillary Raman system for in situ gas analysis by means of fluorescence reduction. Sensors (Basel). 2015;15(9):23110–25.  https://doi.org/10.3390/s150923110.CrossRefGoogle Scholar
  44. 44.
    Salter R, Chu J, Hippler M. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy. Analyst. 2012;137(20):4669–76.  https://doi.org/10.1039/c2an35722d.CrossRefPubMedGoogle Scholar
  45. 45.
    Sandfort V, Trabold BM, Abdolvand A, Bolwien C, Russell PSJ, Wöllenstein J, et al. Monitoring the Wobbe Index of natural gas using Fiber-enhanced Raman spectroscopy. Sensors. 2017;17(12):2714.  https://doi.org/10.3390/s17122714.CrossRefGoogle Scholar
  46. 46.
    Schlüter S, Krischke F, Popovska-Leipertz N, Seeger T, Breuer G, Jeleazcov C, et al. Demonstration of a signal enhanced fast Raman sensor for multi-species gas analyses at a low pressure range for anesthesia monitoring. J Raman Spectrosc. 2015;46(8):708–15.CrossRefGoogle Scholar
  47. 47.
    Schlüter S, Seeger T, Popovska-Leipertz N, Leipertz A (2016) Atemzyklusgenaues Anästhesiegas-Monitoring mit einer laserbasierten Raman-Sonde unter klinischen Bedingungen. tm - Technisches Messen, vol 83.  https://doi.org/10.1515/teme-2015-0055.
  48. 48.
    Schrötter HW, Klöckner HW. Raman scattering cross sections in gases and liquids. In: Weber A, editor. Raman spectroscopy of gases and liquids. Berlin Heidelberg: Springer; 1979. p. 123–66.  https://doi.org/10.1007/978-3-642-81279-8_4.CrossRefGoogle Scholar
  49. 49.
    Shimanouchi T. Tables of molecular vibrational frequencies. Consolidated volume II. J Phys Chem Ref Data. 1977;6(3):993–1102.  https://doi.org/10.1063/1.555560.CrossRefGoogle Scholar
  50. 50.
    Sieburg A, Jochum T, Trumbore SE, Popp J, Frosch T. Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth’s critical zone. Analyst. 2017;142(18):3360–9.  https://doi.org/10.1039/c7an01149k.CrossRefPubMedGoogle Scholar
  51. 51.
    Sieburg A, Schneider S, Yan D, Popp J, Frosch T. Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy. Analyst. 2018;143:1358–66.  https://doi.org/10.1039/C7AN01689A.CrossRefPubMedGoogle Scholar
  52. 52.
    Speight JG. Handbook of petroleum product analysis, vol. 182. Wiley; 2015.Google Scholar
  53. 53.
    Ulbig P, Hoburg D. Determination of the calorific value of natural gas by different methods. Thermochim Acta. 2002;382(1):27–35.  https://doi.org/10.1016/S0040-6031(01)00732-8.CrossRefGoogle Scholar
  54. 54.
    Van Helvoort K, Knippers W, Fantoni R, Stolte S. The Raman spectrum of ethane from 600 to 6500 cm−1 stokes shifts. Chem Phys. 1987;111(3):445–65.  https://doi.org/10.1016/0301-0104(87)85092-9.CrossRefGoogle Scholar
  55. 55.
    Weber A. Raman spectroscopy of gases and liquids. Berlin Heidelberg: Springer; 2012.Google Scholar
  56. 56.
    Yan D, Domes C, Domes R, Frosch T, Popp J, Pletz MW, et al. Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia. Analyst. 2016;141(21):6104–15.  https://doi.org/10.1039/c6an01670g.CrossRefPubMedGoogle Scholar
  57. 57.
    Yan D, Popp J, Frosch T. Analysis of fiber-enhanced Raman gas sensing based on Raman chemical imaging. Anal Chem. 2017;89(22):12269–75.  https://doi.org/10.1021/acs.analchem.7b03209.CrossRefPubMedGoogle Scholar
  58. 58.
    Yan D, Popp J, Pletz MW, Frosch T. Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers. Acs Photonics. 2017;4(1):138–45.  https://doi.org/10.1021/acsphotonics.6b00688.CrossRefGoogle Scholar
  59. 59.
    Yan D, Popp J, Pletz MW, Frosch T. Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range. Anal Methods. 2018;10(6):586–92.  https://doi.org/10.1039/c7ay02398g.CrossRefGoogle Scholar
  60. 60.
    Yan D, Frosch T, Kobelke J, Bierlich J, Popp J, Pletz MW, et al. Fiber-enhanced Raman sensing of cefuroxime in human urine. Anal Chem. 2018;90(22):13243–8.  https://doi.org/10.1021/acs.analchem.8b01355.CrossRefPubMedGoogle Scholar
  61. 61.
    Zachariah-Wolff JL, Egyedi TM, Hemmes K. From natural gas to hydrogen via the Wobbe index: the role of standardized gateways in sustainable infrastructure transitions. Int J Hydrog Energy. 2007;32(9):1235–45.  https://doi.org/10.1016/j.ijhydene.2006.07.024.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Leibniz Institute of Photonic TechnologyJenaGermany
  2. 2.Max Planck Institute for BiogeochemistryJenaGermany
  3. 3.Institute of Physical ChemistryFriedrich Schiller UniversityJenaGermany
  4. 4.Abbe Center of PhotonicsFriedrich Schiller UniversityJenaGermany

Personalised recommendations