Colorimetric detection of Escherichia coli using engineered bacteriophage and an affinity reporter system

  • Sangita Singh
  • Troy Hinkley
  • Sam R. Nugen
  • Joey N. TalbertEmail author
Research Paper


Reporter phage systems have emerged as a promising technology for the detection of bacteria in foods and water. However, the sensitivity of these assays is often limited by the concentration of the expressed reporter as well as matrix interferences associated with the sample. In this study, bacteriophage T7 was engineered to overexpress mutated alkaline phosphatase fused to a carbohydrate-binding module (ALP*-CBM) following infection of E. coli to enable colorimetric detection in a model system. Magnetic cellulose particles were employed to separate and concentrate the overexpressed ALP*-CBM in bacterial lysate. Infection of E. coli with the engineered phage resulted in a limit of quantitation of 1.2 × 105 CFU, equating to 1.2 × 103 CFU/mL in 3.5 h when using a colorimetric assay and 100 mL sample volume. When employing an enrichment step, < 101 CFU/mL could be visually detected from a 100 mL sample volume within 8 h. These results suggest that affinity tag modified enzymes coupled with a material support can provide a simple and effective means to improve signal sensitivity of phage-based assays.

Graphical abstract


Bacteriophage Fusion E. coli Binding module Cellulose Magnetic 



The authors would like to acknowledge Dr. Kevin Nichols for insightful conversations regarding phage-based detection.

Funding information

The research reported in this publication was supported by the National Science Foundation under Grant No. 1705815 and the National Institute of Biomedical Imaging and Bioengineering (R21EB024623).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Science Foundation or the National Institutes of Health.

Supplementary material

216_2019_2095_MOESM1_ESM.pdf (203 kb)
ESM 1 (PDF 203 kb)


  1. 1.
    Martelet A, L'Hostis G, Nevers MC, Volland H, Junot C, Becher F, et al. Phage amplification and immunomagnetic separation combined with targeted mass spectrometry for sensitive detection of viable bacteria in complex food matrices. Anal Chem. 2015;87(11):5553–60.CrossRefGoogle Scholar
  2. 2.
    Zhang D, Coronel-Aguilera CP, Romero PL, Perry L, Minocha U, Rosenfield C, et al. The use of a novel nanoLuc-based reporter phage for the detection of Escherichia coli O157: H7. Sci Rep. 2016;6.Google Scholar
  3. 3.
    Sasahara KC, Gray MJ, Shin SJ, Boor KJ. Detection of viable Mycobacterium avium subsp. paratuberculosis using luciferase reporter systems. Foodborne Pathog Dis. 2004;1(4):258–66.CrossRefGoogle Scholar
  4. 4.
    Willford J, Goodridge LD. An integrated assay for rapid detection of Escherichia coli O157:H7 on beef samples. Food Prot Trends. 2008;28(7):468–72.Google Scholar
  5. 5.
    Chen JH, Alcaine SD, Jackson AA, Rotello VM, Nugen SR. Development of engineered bacteriophages for Escherichia coli detection and high-throughput antibiotic resistance determination. ACS Sens. 2017;2(4):484–9.CrossRefGoogle Scholar
  6. 6.
    Funatsu T, Taniyama T, Tajima T, Tadakuma H, Namiki H. Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. Microbiol Immunol. 2002;46(6):365–9.CrossRefGoogle Scholar
  7. 7.
    Jackson AA, Hinkley TC, Talbert JN, Nugen SR, Sela DA. Genetic optimization of a bacteriophage-delivered alkaline phosphatase reporter to detect Escherichia coli. Analyst. 2016;141(19):5543–8.CrossRefGoogle Scholar
  8. 8.
    Leitao JMM, da Silva J. Firefly luciferase inhibition. J Photochem Photobiol B. 2010;101(1):1–8.CrossRefGoogle Scholar
  9. 9.
    Velazquez M, Feirtag JM. Quenching and enhancement effects of ATP extractants, cleansers, and sanitizers on the detection of the ATP bioluminescence signal. J Food Prot. 1997;60(7):799–803.CrossRefGoogle Scholar
  10. 10.
    Tate J, Ward G. Interferences in immunoassay. Clin Biochem Rev. 2004;25(2):105–20.Google Scholar
  11. 11.
    Derda R, Lockett MR, Tang SKY, Fuller RC, Maxwell EJ, Breiten B, et al. Filter-based assay for Escherichia coli in aqueous samples using bacteriophage-based amplification. Anal Chem. 2013;85(15):7213–20.CrossRefGoogle Scholar
  12. 12.
    Goodridge L, Chen JR, Griffiths M. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157: H7. Appl Environ Microbiol. 1999;65(4):1397–404.Google Scholar
  13. 13.
    Yoon J-Y. Immunosensors. New York: Springer; 2013. p. 199–223.Google Scholar
  14. 14.
    Kumada Y, Murata S, Ishikawa Y, Nakatsuka K, Kishimoto M. Screening of PC and PMMA-binding peptides for site-specific immobilization of proteins. J Biotechnol. 2012;160(3–4):222–8.CrossRefGoogle Scholar
  15. 15.
    Kumada Y. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays. BBA-Protein Proteom. 2014;1844(11):1960–9.CrossRefGoogle Scholar
  16. 16.
    Kumada Y, Kang B, Yamakawa K, Kishimoto M, Horiuchi JI. Efficient preparation and site-directed immobilization of VHH antibodies by genetic fusion of poly(methylmethacrylate)-binding peptide (PMMA-tag). Biotechnol Prog. 2015;31(6):1563–70.CrossRefGoogle Scholar
  17. 17.
    Tomme P, Boraston A, McLean B, Kormos J, Creagh AL, Sturch K, et al. Characterization and affinity applications of cellulose-binding domains. J Chromatogr B. 1998;715(1):283–96.CrossRefGoogle Scholar
  18. 18.
    Duplay P, Bedouelle H, Fowler A, Zabin I, Saurin W, Hofnung M. Sequences of the male gene and of its product, the maltose-binding protein of Escherichia-coli-k12. J Biol Chem. 1984;259(16):606–13.Google Scholar
  19. 19.
    Ikeda T, Ninomiya K-i, Hirota R, Kuroda A. Single-step affinity purification of recombinant proteins using the silica-binding Si-tag as a fusion partner. Protein Expr Purif. 2010;71(1):91–5.CrossRefGoogle Scholar
  20. 20.
    Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO. Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater. 2002;1(3):169–72.CrossRefGoogle Scholar
  21. 21.
    Ko S, Park TJ, Kim H-S, Kim J-H, Cho Y-J. Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticle-based SPR immunosensors. Biosens Bioelectron. 2009;24(8):2592–7.CrossRefGoogle Scholar
  22. 22.
    Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2003;60(5):523–33.CrossRefGoogle Scholar
  23. 23.
    Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 2006;70(2):283–95.CrossRefGoogle Scholar
  24. 24.
    Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382:769–81.CrossRefGoogle Scholar
  25. 25.
    Hojgaard C, Kofoed C, Espersen R, Johansson KE, Villa M, Willemoes M, et al. A soluble, folded protein without charged amino acid residues. Biochemistry. 2016;55(28):3949–56.CrossRefGoogle Scholar
  26. 26.
    Oliveira C, Carvalho V, Domingues L, Gama FM. Recombinant CBM-fusion technology - applications overview. Biotechnol Adv. 2015;33(3–4):358–69.CrossRefGoogle Scholar
  27. 27.
    Abouhmad A, Mamo G, Dishisha T, Amin MA, Hatti-Kaul R. T4 lysozyme fused with cellulose-binding module for antimicrobial cellulosic wound dressing materials. J Appl Microbiol. 2016;121(1):115–25.CrossRefGoogle Scholar
  28. 28.
    Wang S, Cui GZ, Song XF, Feng YG, Cui Q. Efficiency and stability enhancement of cis-epoxysuccinic acid hydrolase by fusion with a carbohydrate binding module and immobilization onto cellulose. Appl Biochem Biotechnol. 2012;168(3):708–17.CrossRefGoogle Scholar
  29. 29.
    Kang DH, Hyeon JE, You SK, Kim SW, Han SO. Efficient enzymatic degradation process for hydrolysis activity of the Carrageenan from red algae in marine biomass. J Biotechnol. 2014;192:108–13.CrossRefGoogle Scholar
  30. 30.
    Lin SC, Lin IP, Chou WI, Hsieh CA, Liu SH, Huang RY, et al. CBM21 starch-binding domain: a new purification tag for recombinant protein engineering. Protein Expr Purif. 2009;65(2):261–6.CrossRefGoogle Scholar
  31. 31.
    Singh S, Hinkley T, Nugen SR, Talbert JN. Fusion of carbohydrate binding module to mutant alkaline phosphatase for immobilization on cellulose. Biocatal Agric Biotechnol. 2018;13:265–71.CrossRefGoogle Scholar
  32. 32.
    Hinkley TC, Garing S, Singh S, Le Ny ALM, Nichols KP, Peters JE, et al. Reporter bacteriophage T7(NLC) utilizes a novel NanoLuc::CBM fusion for the ultrasensitive detection of Escherichia coli in water. Analyst. 2018;143(17):4074–82.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and Human NutritionIowa State UniversityAmesUSA
  2. 2.Department of Food ScienceCornell UniversityIthacaUSA

Personalised recommendations