Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 25, pp 6561–6573 | Cite as

Self-propelled micromachines for analytical sensing: a critical review

  • Marta Pacheco
  • Miguel Ángel López
  • Beatriz Jurado-SánchezEmail author
  • Alberto EscarpaEmail author
Review
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts

Abstract

Self-propelled micromotors are micro- and nanoscale devices that move autonomously in solution by converting a specific stimulus into mechanical work. The broad scope of operations and applications along with the ultra-small dimensions have opened new possibilities to solve complex analytical challenges. Herein we give a critical overview of early developments and future prospects of such tiny moving objects for different analytical sensing and biosensing strategies. From early electrophoretic propelled nanomotors, which were limited to low viscous media, to bubble-propelled micromotors, the field has evolved into sophisticated all-in-one analytical systems with built-in sensing capabilities. Current progress for in vivo biosensing and integration into analytical instrumentation towards fully functional devices will be also covered. We hope that this review provides the reader with some general knowledge and future prospects of self-propelled micromachines as a new paradigm in analytical chemistry.

Graphical abstract

Keywords

Micromotors Nanomotors Sensing Mixing Biosensing Analysis Instrumentation 

Notes

Acknowledgements

M. Pacheco acknowledges the FPU fellowship received from the Spanish Ministry of Education (FPU 16/02211). B. J.-S. acknowledges support from the Spanish Ministry of Science, Innovation and Universities (RYC-2015-17558, co-financed by EU) and from the University of Alcala (CCG2018/EXP-018). A.E. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (CTQ2017-86441-C2-1-R) and the TRANSNANOAVANSENS program (S2018/NMT-4349) from the Community of Madrid.

Compliance with ethical standards

Conflict of interest

There are no conflict of interests to declare.

References

  1. 1.
    Ozin GA, Manners I, Fournier-Bidoz S, Arsenault A. Dream nanomachines. Advd Mater. 2005;17(24):3011–8.CrossRefGoogle Scholar
  2. 2.
    Wang W, Chiang TY, Velegol D, Mallouk TE. Understanding the efficiency of autonomous nano- and microscale motors. J Am Chem Soc. 2013;135(28):10557–65.CrossRefGoogle Scholar
  3. 3.
    Li J, Rozen I, Wang J. Rocket science at the nanoscale. ACS Nano. 2016;10(6):5619–34.CrossRefGoogle Scholar
  4. 4.
    Ebbens SJ, Howse JR. In pursuit of propulsion at the nanoscale. Soft Matter. 2010;6(4):726.CrossRefGoogle Scholar
  5. 5.
    Mei Y, Solovev AA, Sanchez S, Schmidt OG. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem Soc Rev. 2011;40(5):2109–19.CrossRefGoogle Scholar
  6. 6.
    Wang J. Nanomachines: fundamentals and applications. Weinheim: Wiley-VCH; 2013.CrossRefGoogle Scholar
  7. 7.
    Jurado-Sánchez B, Escarpa A. Janus micromotors for electrochemical sensing and biosensing applications: a review. Electroanalysis. 2017;29(1):14–23.CrossRefGoogle Scholar
  8. 8.
    Peng F, Tu Y, Wilson DA. Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem Soc Rev. 2017;46(17):5289–310.CrossRefGoogle Scholar
  9. 9.
    Karshalev E, Esteban-Fernández de Ávila B, Wang J. Micromotors for chemistry-on-the-fly. J Am Chem Soc. 2018;140(11):3810–20.CrossRefGoogle Scholar
  10. 10.
    Dong R, Cai Y, Yang Y, Gao W, Ren B. Photocatalytic micro/nanomotors: from construction to applications. Acc Chem Res. 2018;51(9):1940–7.CrossRefGoogle Scholar
  11. 11.
    Ortiz-Rivera I, Mathesh M, Wilson DA. A supramolecular approach to nanoscale motion: polymersome-based self-propelled nanomotors. Acc Chem Res. 2018;51(9):1891–900.CrossRefGoogle Scholar
  12. 12.
    Patiño T, Arqué X, Mestre R, Palacios L, Sánchez S. Fundamental aspects of enzyme-powered micro- and nanoswimmers. Acc Chem Res. 2018;51(11):2662–71.CrossRefGoogle Scholar
  13. 13.
    Ren L, Wang W, Mallouk TE. Two forces are better than one: combining chemical and acoustic propulsion for enhanced micromotor functionality. Acc Chem Res. 2018;51(9):1948–56.CrossRefGoogle Scholar
  14. 14.
    Kong L, Guan J, Pumera M. Micro- and nanorobots based sensing and biosensing. Curr Opin Electrochem. 2018;10:174–82.CrossRefGoogle Scholar
  15. 15.
    Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh KM, Flechsig G-U, et al. Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J Am Chem Soc. 2009;131(34):12082–3.CrossRefGoogle Scholar
  16. 16.
    Orozco J, Jurado-Sánchez B, Wagner G, Gao W, Vazquez-Duhalt R, Sattayasamitsathit S, et al. Bubble-propelled micromotors for enhanced transport of passive tracers. Langmuir. 2014;30(18):5082–7.CrossRefGoogle Scholar
  17. 17.
    Wang J. Self-propelled affinity biosensors: moving the receptor around the sample. Biosens Bioelectron. 2016;76:234–42.CrossRefGoogle Scholar
  18. 18.
    Rojas D, Jurado-Sánchez B, Escarpa A. “Shoot and sense” Janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples. Anal Chem. 2016;88(7):4153–60.CrossRefGoogle Scholar
  19. 19.
    Esteban-Fernández de Ávila B, Martín A, Soto F, Lopez-Ramirez MA, Campuzano S, Vásquez-Machado GM, et al. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano. 2015;9(7):6756–64.CrossRefGoogle Scholar
  20. 20.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 2003;15(5):353–89.CrossRefGoogle Scholar
  21. 21.
    Martin CR. Nanomaterials: a membrane-based synthetic approach. Science. 1994;266(5193):1961–6.CrossRefGoogle Scholar
  22. 22.
    Uygun M, Jurado-Sánchez B, Uygun DA, Singh VV, Zhang L, Wang J. Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells. Nanoscale. 2017;9(46):18423–9.CrossRefGoogle Scholar
  23. 23.
    Campuzano S, Kagan D, Orozco J, Wang J. Motion-driven sensing and biosensing using electrochemically propelled nanomotors. Analyst. 2011;136(22):4621–30.CrossRefGoogle Scholar
  24. 24.
    Ezhilan B, Gao W, Pei A, Rozen I, Dong R, Jurado-Sanchez B, et al. Motion-based threat detection using microrods: experiments and numerical simulations. Nanoscale. 2015;7(17):7833–40.CrossRefGoogle Scholar
  25. 25.
    Wu J, Balasubramanian S, Kagan D, Manesh KM, Campuzano S, Wang J. Motion-based DNA detection using catalytic nanomotors. Nat Commun. 2010;1:36.CrossRefGoogle Scholar
  26. 26.
    Bunea A-I, Pavel I-A, David S, Gáspár S. Sensing based on the motion of enzyme-modified nanorods. Biosens Bioelectron. 2015;67:42–8.CrossRefGoogle Scholar
  27. 27.
    Nicewarner-Peña SR, Freeman RG, Reiss BD, He L, Peña DJ, Walton ID, et al. Submicrometer metallic barcodes. Science. 2001;294(5540):137–41.CrossRefGoogle Scholar
  28. 28.
    Gao W, Sattayasamitsathit S, Uygun A, Pei A, Ponedal A, Wang J. Polymer-based tubular microbots: role of composition and preparation. Nanoscale. 2012;4(7):2447–53.CrossRefGoogle Scholar
  29. 29.
    Maria-Hormigos R, Jurado-Sanchez B, Vazquez L, Escarpa A. Carbon allotrope nanomaterials based catalytic micromotors. Chem Mater. 2016;28(24):8962–70.CrossRefGoogle Scholar
  30. 30.
    Maria-Hormigos R, Jurado-Sánchez B, Escarpa A. Graphene quantum dot based micromotors: a size matter. Chem Commun. 2019.Google Scholar
  31. 31.
    Jurado-Sánchez B, Pacheco M, Maria-Hormigos R, Escarpa A. Perspectives on Janus micromotors: materials and applications. Appl Mater Today. 2017;9:407–18.CrossRefGoogle Scholar
  32. 32.
    Yi Y, Sanchez L, Gao Y, Yu Y. Janus particles for biological imaging and sensing. Analyst. 2016;141(12):3526–39.CrossRefGoogle Scholar
  33. 33.
    Jurado-Sánchez B, Sattayasamitsathit S, Gao W, Santos L, Fedorak Y, Singh VV, et al. Self-propelled activated carbon janus micromotors for efficient water purification. Small. 2015;11(4):499–506.CrossRefGoogle Scholar
  34. 34.
    Gao W, Liu M, Liu L, Zhang H, Dong B, Li CY. One-step fabrication of multifunctional micromotors. Nanoscale. 2015;7(33):13918–23.CrossRefGoogle Scholar
  35. 35.
    Loget G, Zigah D, Bouffier L, Sojic N, Kuhn A. Bipolar electrochemistry: from materials science to motion and beyond. Acc Chem Res. 2013;46(11):2513–23.CrossRefGoogle Scholar
  36. 36.
    Chen C, Karshalev E, Li J, Soto F, Castillo R, Campos I, et al. Transient Micromotors that disappear when no longer needed. ACS Nano. 2016;10(11):10389–96.CrossRefGoogle Scholar
  37. 37.
    Chen C, Karshalev E, Guan J, Wang J. Magnesium-based micromotors: water-powered propulsion, multifunctionality, and biomedical and environmental applications. Small. 2018;14(23):1704252.CrossRefGoogle Scholar
  38. 38.
    Gao W, Uygun A, Wang J. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J Am Chem Soc. 2012;134(2):897–900.CrossRefGoogle Scholar
  39. 39.
    Orozco J, García-Gradilla V, D’Agostino M, Gao W, Cortés A, Wang J. Artificial enzyme-powered microfish for water-quality testing. ACS Nano. 2013;7(1):818–24.CrossRefGoogle Scholar
  40. 40.
    Singh VV, Kaufmann K. Esteban-Fernández de Ávila B, Uygun M, Wang J. Nanomotors responsive to nerve-agent vapor plumes. Chem Commun. 2016;52(16):3360–3.CrossRefGoogle Scholar
  41. 41.
    Moo JGS, Wang H, Zhao G, Pumera M. Biomimetic artificial inorganic enzyme-free self-propelled microfish robot for selective detection of Pb2+ in water. Chem Eur J. 2014;20(15):4292–6.CrossRefGoogle Scholar
  42. 42.
    Zhao G, Sanchez S, Schmidt OG, Pumera M. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Nanoscale. 2013;5(7):2909–14.CrossRefGoogle Scholar
  43. 43.
    Van Nguyen K, Minteer SD. DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors: toward signal-on motion-based DNA biosensor. Chem Commun. 2015;51(23):4782–4.CrossRefGoogle Scholar
  44. 44.
    Fu S, Zhang X, Xie Y, Wu J, Ju H. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection. Nanoscale. 2017;9(26):9026–33.CrossRefGoogle Scholar
  45. 45.
    Zhang X, Chen C, Wu J, Ju H. Bubble-propelled jellyfish-like micromotors for DNA sensing. ACS Appl Mater Interfaces. 2019;11(14):13581–8.CrossRefGoogle Scholar
  46. 46.
    Campuzano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, et al. Bacterial isolation by lectin-modified microengines. Nano Lett. 2012;12(1):396–401.CrossRefGoogle Scholar
  47. 47.
    Orozco J, Pan G, Sattayasamitsathit S, Galarnyk M, Wang J. Micromotors to capture and destroy anthrax simulant spores. Analyst. 2015;140(5):1421–7.CrossRefGoogle Scholar
  48. 48.
    Maria-Hormigos R, Jurado-Sanchez B, Escarpa A. Labs-on-a-chip meet self-propelled micromotors. Lab Chip. 2016;16(13):2397–407.CrossRefGoogle Scholar
  49. 49.
    Kagan D, Campuzano S, Balasubramanian S, Kuralay F, Flechsig GU, Wang J. Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett. 2011;11(5):2083–7.CrossRefGoogle Scholar
  50. 50.
    Balasubramanian S, Kagan D, Jack Hu C-M, Campuzano S, Lobo-Castañon MJ, Lim N, et al. Micromachine-enabled capture and isolation of cancer cells in complex media. Angew Chem Int Ed. 2011;50(18):4161–4.CrossRefGoogle Scholar
  51. 51.
    Orozco J, Campuzano S, Kagan D, Zhou M, Gao W, Wang J. Dynamic isolation and unloading of target proteins by aptamer-modified microtransporters. Anal Chem. 2011;83(20):7962–9.CrossRefGoogle Scholar
  52. 52.
    Yu X, Li Y, Wu J, Ju H. Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Anal Chem. 2014;86(9):4501–7.CrossRefGoogle Scholar
  53. 53.
    García M, Orozco J, Guix M, Gao W, Sattayasamitsathit S, Escarpa A, et al. Micromotor-based lab-on-chip immunoassays. Nanoscale. 2013;5(4):1325–31.CrossRefGoogle Scholar
  54. 54.
    Vilela D, Orozco J, Cheng G, Sattayasamitsathit S, Galarnyk M, Kan C, et al. Multiplexed immunoassay based on micromotors and microscale tags. Lab Chip. 2014;14(18):3505–9.CrossRefGoogle Scholar
  55. 55.
    Maria-Hormigos R, Jurado-Sánchez B, Escarpa A. Tailored magnetic carbon allotrope catalytic micromotors for ‘on-chip’ operations. Nanoscale. 2017;9(19):6286–90.CrossRefGoogle Scholar
  56. 56.
    Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S. Isolation of HL-60 cancer cells from the human serum sample using MnO2-PEI/Ni/Au/aptamer as a novel nanomotor and electrochemical determination of thereof by aptamer/gold nanoparticles-poly(3,4-ethylene dioxythiophene) modified GC electrode. Biosens Bioelectron. 2018;110:141–6.CrossRefGoogle Scholar
  57. 57.
    Cinti S, Valdés-Ramírez G, Gao W, Li J, Palleschi G, Wang J. Microengine-assisted electrochemical measurements at printable sensor strips. Chem Commun. 2015;51(41):8668–71.CrossRefGoogle Scholar
  58. 58.
    Singh VV, Kaufmann K, Orozco J, Li J, Galarnyk M, Arya G, et al. Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chem Commun. 2015;51(56):11190–3.CrossRefGoogle Scholar
  59. 59.
    Jurado-Sánchez B, Escarpa A, Wang J. Lighting up micromotors with quantum dots for smart chemical sensing. Chem Commun. 2015;51(74):14088–91.CrossRefGoogle Scholar
  60. 60.
    Beatriz JS, Marta P, Jaime R, Alberto E. Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew Chem Int Ed. 2017;56(24):6957–61.CrossRefGoogle Scholar
  61. 61.
    Pacheco M, Jurado-Sánchez B, Escarpa A. Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors. Anal Chem. 2018;90(4):2912–7.CrossRefGoogle Scholar
  62. 62.
    Zhang Z, Li J, Fu L, Liu D, Chen L. Magnetic molecularly imprinted microsensor for selective recognition and transport of fluorescent phycocyanin in seawater. J Mater Chem A. 2015;3(14):7437–44.CrossRefGoogle Scholar
  63. 63.
    Orozco J, Cortés A, Cheng G, Sattayasamitsathit S, Gao W, Feng X, et al. Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. J Am Chem Soc. 2013;135(14):5336–9.CrossRefGoogle Scholar
  64. 64.
    Karshalev E, Kumar R, Jeerapan I, Castillo R, Campos I, Wang J. Multistimuli-responsive camouflage swimmers. Chem Mater. 2018;30(5):1593–601.CrossRefGoogle Scholar
  65. 65.
    Esteban-Fernández de Ávila B, Lopez-Ramirez MA, Báez DF, Jodra A, Singh VV, Kaufmann K, et al. Aptamer-modified graphene-based catalytic micromotors: off–on fluorescent detection of ricin. ACS Sensors. 2016;1(3):217–21.CrossRefGoogle Scholar
  66. 66.
    Molinero-Fernández Á, Moreno-Guzmán M, López MÁ, Escarpa A. Biosensing strategy for simultaneous and accurate quantitative analysis of mycotoxins in food samples using unmodified graphene micromotors. Anal Chem. 2017;89(20):10850–7.CrossRefGoogle Scholar
  67. 67.
    Molinero-Fernández Á, Jodra A, Moreno-Guzmán M, López MÁ, Escarpa A. Magnetic reduced graphene oxide/nickel/platinum nanoparticles micromotors for mycotoxin analysis. Chem Eur J. 2018;24(28):7172–6.CrossRefGoogle Scholar
  68. 68.
    Singh VV, Kaufmann K, de Ávila BE-F, Karshalev E, Wang J. Molybdenum disulfide-based tubular microengines: toward biomedical applications. Adv Funct Mater. 2016;26(34):6270–8.CrossRefGoogle Scholar
  69. 69.
    de Ávila BE-F, Zhao M, Campuzano S, Ricci F, Pingarrón JM, Mascini M, et al. Rapid micromotor-based naked-eye immunoassay. Talanta. 2017;167:651–7.CrossRefGoogle Scholar
  70. 70.
    María-Hormigos R, Jurado-Sánchez B, Escarpa A. Self-propelled micromotors for naked-eye detection of phenylenediamines isomers. Anal Chem. 2018;90(16):9830–7.CrossRefGoogle Scholar
  71. 71.
    Venugopalan PL, Sai R, Chandorkar Y, Basu B, Shivashankar S, Ghosh A. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett. 2014;14(4):1968–75.CrossRefGoogle Scholar
  72. 72.
    Yan X, Zhou Q, Vincent M, Deng Y, Yu J, Xu J, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot. 2017;2(12):eaaq1155.CrossRefGoogle Scholar
  73. 73.
    Jung I, Ih S, Yoo H, Hong S, Park S. Fourier transform surface plasmon resonance of nanodisks embedded in magnetic nanorods. Nano Lett. 2018;18(3):1984–92.CrossRefGoogle Scholar
  74. 74.
    Moo JGS, Pumera M. Self-propelled micromotors monitored by particle-electrode impact voltammetry. ACS Sens. 2016;1(7):949–57.CrossRefGoogle Scholar
  75. 75.
    Draz MS, Kochehbyoki KM, Vasan A, Battalapalli D, Sreeram A, Kanakasabapathy MK, et al. DNA engineered micromotors powered by metal nanoparticles for motion based cellphone diagnostics. Nat Commun. 2018;9(1):4282.CrossRefGoogle Scholar
  76. 76.
    Vilela D, Cossío U, Parmar J, Martínez-Villacorta AM, Gómez-Vallejo V, Llop J, et al. Medical imaging for the tracking of micromotors. ACS Nano. 2018;12(2):1220–7.CrossRefGoogle Scholar
  77. 77.
    Li J, Thamphiwatana S, Liu W. Esteban-Fernández de Ávila B, Angsantikul P, Sandraz E, et al. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano. 2016;10(10):9536–42.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, Physical Chemistry and Chemical EngineeringUniversity of AlcalaAlcala de HenaresSpain
  2. 2.Chemical Research Institute “Andrés M. del Río”University of AlcalaAlcala de HenaresSpain

Personalised recommendations