Analytical and Bioanalytical Chemistry

, Volume 411, Issue 25, pp 6745–6754 | Cite as

Photoclick chemistry to create dextran-based nucleic acid microarrays

  • Zeneida Díaz-Betancor
  • María-José BañulsEmail author
  • Ángel Maquieira
Research Paper


In the literature, there are reports of the utilization of various hydrogels to create generic platforms for protein microarray applications. Here, a novel strategy was developed to obtain high-performance microarrays. In it, a dextran hydrogel is used to covalently immobilize oligonucleotides and proteins. This method employs aqueous solutions of dextran methacrylate (Dx-MA), which is a biocompatible photopolymerizable monomer. Capture probes are immobilized inside the hydrogel via a light-induced thiol–acrylate coupling reaction at the same time as the dextran polymer is formed. Hydrogel microarrays based on this technique were prepared on different surfaces, such as a Blu-ray Disk and polycarbonate or alkene-functionalized glass slides, and these systems showed high probe-loading capabilities and good biorecognition yields. This methodology presents advantages such as a low cost, a short analysis time, a low limit of detection, and multiplexing capabilities, among others. Confocal fluorescence microscopy analysis demonstrated that in these hydrogel-based microarrays, receptor immobilization and the biorecognition event occurred within the hydrogel and not merely on the surface.


Fluorescence microarray Hydrogel Dextran Thiol–acrylate click chemistry Nucleic acids 



Funding from MINECO through the project BIHOLOG CTQ/2016/75749-R is acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest. All the authors contributed equally to the paper.

Supplementary material

216_2019_2050_MOESM1_ESM.pdf (458 kb)
ESM 1 (PDF 457 kb)


  1. 1.
    Heller MJ. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng. 2002;4:129–53. Scholar
  2. 2.
    Sassolas A, Leca-Bouvier BD, Blum LJ. DNA biosensors and microarrays. Chem Rev. 2008;108:109–39. Scholar
  3. 3.
    Uttamchandani M, Neo JL, Ong BNZ, Moochhala S. Applications of microarrays in pathogen detection and biodefence. Trends Biotechnol. 2009;27:53–61. Scholar
  4. 4.
    Yu X, Schneiderhan-Marra N, Joos TO. Protein microarrays for personalized medicine. Clin Chem. 2010;56:376–87. Scholar
  5. 5.
    North SH, Taitt CR. Immobilization of biomolecular probes for arrays and assay: critical aspects of biointerfaces. In: Chemoselective and bioorthogonal ligation reactions. Weinheim: Wiley-VCH; 2017. p. 459–95.Google Scholar
  6. 6.
    Nimse S, Song K, Sonawane M, Sayyed D, Kim T. Immobilization techniques for microarray: challenges and applications. Sensors. 2014;14:22208–29. Scholar
  7. 7.
    Cardenas-Benitez B, Djordjevic I, Hosseini S, Madou MJ, Martinez-Chapa SO. Review: Covalent functionalization of carbon nanomaterials for biosensor applications: an update. J Electrochem Soc. 2018;165:B103–17.
  8. 8.
    Qu Z, Xu H, Gu H. Synthesis and biomedical applications of poly((meth)acrylic acid) brushes. ACS Appl Mater Interfaces. 2015;7:14537–51. Scholar
  9. 9.
    Oh SJ, Hong BJ, Choi KY, Park JW. Surface modification for DNA and protein microarrays. OMICS. 2006;10:327–43. Scholar
  10. 10.
    Luderer F, Walschus U. Immobilization of oligonucleotides for biochemical sensing by self-assembled monolayers: thiol–organic bonding on gold and silanization on silica surfaces. In: Immobilisation of DNA on chips I. Berlin: Springer; 2005. p. 37–56.Google Scholar
  11. 11.
    Caminade A-M. Dendrimers as biological sensors. In: Dendrimers. Chichester: Wiley; 2011. p. 375–92.Google Scholar
  12. 12.
    Kiat NJ, Simeon F, Phon TH, Ajikumar PK. DNA-directed assembly microarray for protein and small molecule inhibitor screening. Totowa, NJ: Humana; 2011. p. 127–40.Google Scholar
  13. 13.
    Basinska T. Reactions leading to controlled hydrophilicity/hydrophobicity of surfaces. Curr Org Chem. 2017;21(24):2479–501.
  14. 14.
    Weinrich D, Köhn M, Jonkheijm P, Westerlind U, Dehmelt L, Engelkamp H, et al. Preparation of biomolecule microstructures and microarrays by thiol-ene photoimmobilization. ChemBioChem. 2010;11:235–47. Scholar
  15. 15.
    Wendeln C, Rinnen S, Schulz C, Kaufmann T, Arlinghaus HF, Ravoo BJ. Rapid preparation of multifunctional surfaces for orthogonal ligation by microcontact chemistry. Chem Eur J. 2012;18:5880–8. Scholar
  16. 16.
    Makaraviciute A, Ramanaviciene A. Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron. 2013;50:460–71. Scholar
  17. 17.
    Bañuls M-J, Jiménez-Meneses P, Meyer A, Vasseur J-J, Morvan F, Escorihuela J, et al. Improved performance of DNA microarray multiplex hybridization using probes anchored at several points by thiol–ene or thiol–yne coupling chemistry. Bioconjug Chem. 2017;28:496–506.
  18. 18.
    Neumann K, Conde-González A, Owens M, Venturato A, Zhang Y, Geng J, et al. An approach to the high-throughput fabrication of glycopolymer microarrays through thiol–ene chemistry. Macromolecules. 2017;50:6026–31.
  19. 19.
    Gupta N, Lin BF, Campos LM, Dimitriou MD, Hikita ST, Treat ND, et al. A versatile approach to high-throughput microarrays using thiol-ene chemistry. Nat Chem. 2010;2:138–45. Scholar
  20. 20.
    Rubina AY, Dementieva EI, Stomakhin AA, Darii EL, Pan’kov SV, Barsky VE, et al. Hydrogel-based protein microchips: manufacturing, properties, and applications. Biotechniques. 2003;34:1008–22. Scholar
  21. 21.
    Varshosaz J. Dextran conjugates in drug delivery. Expert Opin Drug Deliv. 2012;9:509–23. Scholar
  22. 22.
    Desmet C, Blum LJ, Marquette CA. High-throughput multiplexed competitive immunoassay for pollutants sensing in water. Anal Chem. 2012;84:10267–76. Scholar
  23. 23.
    Moschallski M, Evers A, Brandstetter T, Rühe J. Sensitivity of microarray based immunoassays using surface-attached hydrogels. Anal Chim Acta. 2013;781:72–9. Scholar
  24. 24.
    Beyer A, Pollok S, Berg A, Weber K, Popp J. Easy daylight fabricated hydrogel Array for colorimetric DNA analysis. Macromol Biosci. 2014;14:889–98. Scholar
  25. 25.
    Alonso R, Jiménez-Meneses P, García-Rupérez J, Bañuls M-J, Maquieira Á. Thiol–ene click chemistry towards easy microarraying of half-antibodies. Chem Commun. 2018;54:6144–7. Scholar
  26. 26.
    Escorihuela J, Bañuls MJ, Grijalvo S, Eritja R, Puchades R, Maquieira Á. Direct covalent attachment of DNA microarrays by rapid thiol-ene “click” chemistry. Bioconjug Chem. 2014;25:618–27.CrossRefGoogle Scholar
  27. 27.
    Escorihuela J, Bañuls M-J, Puchades R, Maquieira Á. Site-specific immobilization of DNA on silicon surfaces by using the thiol–yne reaction. J Mater Chem B. 2014;2:8510–7. Scholar
  28. 28.
    Escorihuela J, Bañuls MJ, Puchades R, Maquieira Á. Development of oligonucleotide microarrays onto Si-based surfaces via thioether linkage mediated by UV irradiation. Bioconjug Chem. 2012;23:2121–8.CrossRefGoogle Scholar
  29. 29.
    Dondoni A. The emergence of thiol–ene coupling as a click process for materials and bioorganic chemistry. Angew Chem Int Ed. 2008;47:8995–7.
  30. 30.
    Mira D, Llorente R, Morais S, Puchades R, Maquieira A, Marti J. High-throughput screening of surface-enhanced fluorescence on industrial standard digital recording media. Proc SPIE. 2004;5617:364–73.Google Scholar
  31. 31.
    van Dijk-Wolthuis WNE, Franssen O, Talsma H, van Steenbergen MJ, Kettenes-van den Bosch JJ, Hennink WE. Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules. 1995;28:6317–22.
  32. 32.
    Pirrung MC. How to make a DNA chip. Angew Chem Int Ed. 2002;41:1276–89.<1276::AID-ANIE1276>3.0.CO;2-2.
  33. 33.
    Wang C, Jia X-M, Jiang C, Zhuang G-N, Yan Q, Xiao S-J. DNA microarray fabricated on poly(acrylic acid) brushes-coated porous silicon by in situ rolling circle amplification. Analyst. 2012;137:4539. Scholar
  34. 34.
    Casanova-Salas I, Rubio-Briones J, Calatrava A, Mancarella C, Masiá E, Casanova J, et al. Identification of miR-187 and miR-182 as biomarkers of early diagnosis and prognosis in patients with prostate cancer treated with radical prostatectomy. J Urol. 2014;192:252–9.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zeneida Díaz-Betancor
    • 1
  • María-José Bañuls
    • 1
    • 2
    Email author
  • Ángel Maquieira
    • 1
    • 2
  1. 1.IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaValenciaSpain
  2. 2.Departamento de QuímicaUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations