Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 25, pp 6723–6732 | Cite as

Four steps for revealing and adjusting the 3D structure of aptamers in solution by small-angle X-ray scattering and computer simulation

  • Felix N. Tomilin
  • Roman Moryachkov
  • Irina Shchugoreva
  • Vladimir N. Zabluda
  • Georgy Peters
  • Mikhail Platunov
  • Vera Spiridonova
  • Anastasia Melnichuk
  • Anastasia Atrokhova
  • Sergey S. Zamay
  • Sergey G. Ovchinnikov
  • Galina S. Zamay
  • Alexey Sokolov
  • Tatiana N. Zamay
  • Maxim V. BerezovskiEmail author
  • Anna S. KichkailoEmail author
Research Paper
  • 118 Downloads

Abstract

Nucleic acid (NA) aptamers bind to their targets with high affinity and selectivity. The three-dimensional (3D) structures of aptamers play a major role in these non-covalent interactions. Here, we use a four-step approach to determine a true 3D structure of aptamers in solution using small-angle X-ray scattering (SAXS) and molecular structure restoration (MSR). The approach consists of (i) acquiring SAXS experimental data of an aptamer in solution, (ii) building a spatial distribution of the molecule’s electron density using SAXS results, (iii) constructing a 3D model of the aptamer from its nucleotide primary sequence and secondary structure, and (iv) comparing and refining the modeled 3D structures with the experimental SAXS model. In the proof-of-principle we analyzed the 3D structure of RE31 aptamer to thrombin in a native free state at different temperatures and validated it by circular dichroism (CD). The resulting 3D structure of RE31 has the most energetically favorable conformation and the same elements such as a B-form duplex, non-complementary region, and two G-quartets which were previously reported by X-ray diffraction (XRD) from a single crystal. More broadly, this study demonstrates the complementary approach for constructing and adjusting the 3D structures of aptamers, DNAzymes, and ribozymes in solution, and could supply new opportunities for developing functional nucleic acids.

Graphical abstract

Keywords

Aptamer Thrombin Three-dimensional structure Small-angle X-ray scattering Molecular modeling 

Abbreviations

CD

Circular dichroism

Cryo-EM

Cryogenic electron microscopy

FRET

Fluorescence resonance energy transfer

MSR

Molecular structure restoration

NMR

Nuclear magnetic resonance spectroscopy

SAXS

Small-angle X-ray scattering

XRD

X-ray diffraction

Notes

Acknowledgements

Authors are grateful to Ana Gargaun for English grammar correction. This work was funded in parts by the Ministry of Science and Higher Education of the Russian Federation; project 0287-2019-0007 the Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools (project no. SP-938.2015.5) and the grant of KSAI “Krasnoyarsk Regional Fund of Supporting Scientific and Technological Activities” for M.P., the internship “The study of the stacking of the secondary structure of DNA aptamers to thrombin” for R.M.

Author contributions

V.N. Zabluda, S.S. Zamay, S.G. Ovchinnikov created an idea, designed the overall concept, supervised the work. R. Moryachkov, M. Platunov, G. Peters, V.N. Zabluda, A. Melnichuk performed SAXS experiments, F.N. Tomilin, I. Shchugoreva, S.G. Ovchinnikov, A. Sokolov perform modeling, V. Spiridonova, A. Melnichuk, A. Atrokhova performed circular dichroic spectrum analysis and UV-melting, F.N. Tomilin, S.S. Zamay, G.S. Zamay, T.N. Zamay, M.V. Berezovski, R. Moryachkov, M. Platunov, A.S. Kichkailo analyzed all data and wrote the paper. All authors provided intellectual input, edited and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

216_2019_2045_MOESM1_ESM.pdf (283 kb)
ESM 1 (PDF 391 kb)

References

  1. 1.
    Mascini M, Palchetti I, Tombelli S. Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed Engl. 2012;51(6):1316–32.  https://doi.org/10.1002/anie.201006630.CrossRefGoogle Scholar
  2. 2.
    Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science. 2000;287(5454):820–5.  https://doi.org/10.1126/science.287.5454.820.CrossRefGoogle Scholar
  3. 3.
    Labib M, Zamay AS, Kolovskaya OS, Reshetneva IT, Zamay GS, Kibbee RJ, et al. Aptamer-based impedimetric sensor for bacterial typing. Anal Chem. 2012;84(19):8114–7.  https://doi.org/10.1021/ac302217u.CrossRefGoogle Scholar
  4. 4.
    Labib M, Zamay AS, Kolovskaya OS, Reshetneva IT, Zamay GS, Kibbee RJ, et al. Aptamer-based viability impedimetric sensor for bacteria. Anal Chem. 2012;84(21):8966–9.  https://doi.org/10.1021/ac302902s.CrossRefGoogle Scholar
  5. 5.
    Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chem Rev. 2009;109(5):1948–98.  https://doi.org/10.1021/cr030183i.CrossRefGoogle Scholar
  6. 6.
    Pang X, Cui C, Wan S, Jiang Y, Zhang L, Xia L, et al. Bioapplications of cell-SELEX-generated aptamers in cancer diagnostics, therapeutics, theranostics and biomarker discovery: a comprehensive review. Cancers (Basel). 2018;10(2).  https://doi.org/10.3390/cancers10020047.
  7. 7.
    Zhang J, Liu B, Liu H, Zhang X, Tan W. Aptamer-conjugated gold nanoparticles for bioanalysis. Nanomedicine (Lond). 2013;8(6):983–93.  https://doi.org/10.2217/nnm.13.80.CrossRefGoogle Scholar
  8. 8.
    Zhou W, Huang PJ, Ding J, Liu J. Aptamer-based biosensors for biomedical diagnostics. Analyst. 2014;139(11):2627–40.  https://doi.org/10.1039/c4an00132j.CrossRefGoogle Scholar
  9. 9.
    Zimbres FM, Tarnok A, Ulrich H, Wrenger C. Aptamers: novel molecules as diagnostic markers in bacterial and viral infections? Biomed Res Int. 2013;2013:731516.  https://doi.org/10.1155/2013/731516.CrossRefGoogle Scholar
  10. 10.
    Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9(7):537–50.  https://doi.org/10.1038/nrd3141.CrossRefGoogle Scholar
  11. 11.
    Kruspe S, Mittelberger F, Szameit K, Hahn U. Aptamers as drug delivery vehicles. ChemMedChem. 2014;9(9):1998–2011.  https://doi.org/10.1002/cmdc.201402163.CrossRefGoogle Scholar
  12. 12.
    Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. Molecular Ther Nucleic Acids. 2014;3:e182.  https://doi.org/10.1038/mtna.2014.32.CrossRefGoogle Scholar
  13. 13.
    Kennard O, Hunter WN. Oligonucleotide structure: a decade of results from single crystal X-ray diffraction studies. Q Rev Biophys. 1989;22(3):327–79.CrossRefGoogle Scholar
  14. 14.
    Adrian M, Heddi B, Phan AT. NMR spectroscopy of G-quadruplexes. Methods. 2012;57(1):11–24.  https://doi.org/10.1016/j.ymeth.2012.05.003.CrossRefGoogle Scholar
  15. 15.
    Kyogoku Y. NMR studies on structure and interaction of proteins and nucleic acids in solution. Tanpakushitsu Kakusan Koso. 1995;40(3):327–39.Google Scholar
  16. 16.
    Mao X, Marky LA, Gmeiner WH. NMR structure of the thrombin-binding DNA aptamer stabilized by Sr2+. J Biomol Struct Dyn. 2004;22(1):25–33.  https://doi.org/10.1080/07391102.2004.10506977.CrossRefGoogle Scholar
  17. 17.
    van Buuren BN, Schleucher J, Wittmann V, Griesinger C, Schwalbe H, Wijmenga SS. NMR spectroscopic determination of the solution structure of a branched nucleic acid from residual dipolar couplings by using isotopically labeled nucleotides. Angew Chem Int Ed Engl. 2004;43(2):187–92.  https://doi.org/10.1002/anie.200351632.CrossRefGoogle Scholar
  18. 18.
    van der Werf RM, Tessari M, Wijmenga SS. Nucleic acid helix structure determination from NMR proton chemical shifts. J Biomol NMR. 2013;56(2):95–112.  https://doi.org/10.1007/s10858-013-9725-y.CrossRefGoogle Scholar
  19. 19.
    Leupin W, Wagner G, Denny WA, Wuthrich K. Assignment of the 13C nuclear magnetic resonance spectrum of a short DNA-duplex with 1H-detected two-dimensional heteronuclear correlation spectroscopy. Nucleic Acids Res. 1987;15(1):267–75.  https://doi.org/10.1093/nar/15.1.267.CrossRefGoogle Scholar
  20. 20.
    Hammel M. Validation of macromolecular flexibility in solution by small-angle x-ray scattering (SAXS). Eur Biophys J. 2012;41(10):789–99.  https://doi.org/10.1007/s00249-012-0820-x.CrossRefGoogle Scholar
  21. 21.
    Rambo RP, Tainer JA. Super-resolution in solution x-ray scattering and its applications to structural systems biology. Annu Rev Biophys. 2013;42:415–41.  https://doi.org/10.1146/annurev-biophys-083012-130301.CrossRefGoogle Scholar
  22. 22.
    Vieville JM, Barluenga S, Winssinger N, Delsuc MA. Duplex formation and secondary structure of gamma-PNA observed by NMR and CD. Biophys Chem. 2016;210:9–13.  https://doi.org/10.1016/j.bpc.2015.09.002.CrossRefGoogle Scholar
  23. 23.
    Preus S, Wilhelmsson LM. Advances in quantitative FRET-based methods for studying nucleic acids. Chembiochem. 2012;13(14):1990–2001.  https://doi.org/10.1002/cbic.201200400.CrossRefGoogle Scholar
  24. 24.
    Bai XC, Martin TG, Scheres SH, Dietz H. Cryo-EM structure of a 3D DNA-origami object. Proc Natl Acad Sci U S A. 2012;109(49):20012–7.  https://doi.org/10.1073/pnas.1215713109.CrossRefGoogle Scholar
  25. 25.
    Martin TG, Bharat TA, Joerger AC, Bai XC, Praetorius F, Fersht AR, et al. Design of a molecular support for cryo-EM structure determination. Proc Natl Acad Sci U S A. 2016;113(47):E7456–E63.  https://doi.org/10.1073/pnas.1612720113.CrossRefGoogle Scholar
  26. 26.
    Nunn CM, Van Meervelt L, Zhang SD, Moore MH, Kennard O. DNA-drug interactions. The crystal structures of d(TGTACA) and d(TGATCA) complexed with daunomycin. J Mol Biol. 1991;222(2):167–77.CrossRefGoogle Scholar
  27. 27.
    Ruigrok VJ, Levisson M, Hekelaar J, Smidt H, Dijkstra BW, van der Oost J. Characterization of aptamer-protein complexes by x-ray crystallography and alternative approaches. Int J Mol Sci. 2012;13(8):10537–52.  https://doi.org/10.3390/ijms130810537.CrossRefGoogle Scholar
  28. 28.
    Bood M, Sarangamath S, Wranne MS, Grotli M, Wilhelmsson LM. Fluorescent nucleobase analogues for base-base FRET in nucleic acids: synthesis, photophysics and applications. Beilstein J Org Chem. 2018;14:114–29.  https://doi.org/10.3762/bjoc.14.7.CrossRefGoogle Scholar
  29. 29.
    Paramasivan S, Rujan I, Bolton PH. Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods. 2007;43(4):324–31.  https://doi.org/10.1016/j.ymeth.2007.02.009.CrossRefGoogle Scholar
  30. 30.
    Orlova EV, Saibil HR. Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev. 2011;111(12):7710–48.  https://doi.org/10.1021/cr100353t.CrossRefGoogle Scholar
  31. 31.
    Jeffries CM, Graewert MA, Blanchet CE, Langley DB, Whitten AE, Svergun DI. Preparing monodisperse macromolecular samples for successful biological small-angle x-ray and neutron-scattering experiments. Nat Protoc. 2016;11(11):2122–53.  https://doi.org/10.1038/nprot.2016.113.CrossRefGoogle Scholar
  32. 32.
    Guinier A. L'esprit de la recherche aux U. S. A. Atomes. 1947;2(20):378–82.Google Scholar
  33. 33.
    Timasheff SN, Witz J, Luzzati V. The structure of high molecular weight ribonucleic acid in solution. A smallangle x-ray scattering study. Biophys J. 1961;1:525–37.CrossRefGoogle Scholar
  34. 34.
    Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, et al. New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr. 2012;45(Pt 2):342–50.  https://doi.org/10.1107/S0021889812007662.CrossRefGoogle Scholar
  35. 35.
    Svergun D, Barberato C, Koch MHJ. CRYSOL - a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr. 1995;28(6):768–73.  https://doi.org/10.1107/S0021889895007047.CrossRefGoogle Scholar
  36. 36.
    Stewart JJP. MOPAC2016. Stewart Computational Chemistry, Colorado Springs, CO, USA. http://openmopac.net/MOPAC2016.html. 2016
  37. 37.
    Svergun DI. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr. 1992;25(4):495–503.  https://doi.org/10.1107/S0021889892001663.CrossRefGoogle Scholar
  38. 38.
    Svergun DI. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J. 1999;76(6):2879–86.  https://doi.org/10.1016/S0006-3495(99)77443-6.CrossRefGoogle Scholar
  39. 39.
    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4(1):17.  https://doi.org/10.1186/1758-2946-4-17.CrossRefGoogle Scholar
  40. 40.
    Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–15.  https://doi.org/10.1093/nar/gkg595.CrossRefGoogle Scholar
  41. 41.
    Ikebukuro K, Okumura Y, Sumikura K, Karube I. A novel method of screening thrombin-inhibiting DNA aptamers using an evolution-mimicking algorithm. Nucleic Acids Res. 2005;33(12):e108.  https://doi.org/10.1093/nar/gni108.CrossRefGoogle Scholar
  42. 42.
    Macaya RF, Waldron JA, Beutel BA, Gao H, Joesten ME, Yang M, et al. Structural and functional characterization of potent antithrombotic oligonucleotides possessing both quadruplex and duplex motifs. Biochemistry. 1995;34(13):4478–92.CrossRefGoogle Scholar
  43. 43.
    Padmanabhan K, Tulinsky A. An ambiguous structure of a DNA 15-mer thrombin complex. Acta Crystallogr D Biol Crystallogr. 1996;52(Pt 2):272–82.  https://doi.org/10.1107/S0907444995013977.CrossRefGoogle Scholar
  44. 44.
    Russo Krauss I, Merlino A, Giancola C, Randazzo A, Mazzarella L, Sica F. Thrombin-aptamer recognition: a revealed ambiguity. Nucleic Acids Res. 2011;39(17):7858–67.  https://doi.org/10.1093/nar/gkr522.CrossRefGoogle Scholar
  45. 45.
    Russo Krauss I, Merlino A, Randazzo A, Novellino E, Mazzarella L, Sica F. High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity. Nucleic Acids Res. 2012;40(16):8119–28.  https://doi.org/10.1093/nar/gks512.CrossRefGoogle Scholar
  46. 46.
    Spiridonova VA, Barinova KV, Glinkina KA, Melnichuk AV, Gainutdynov AA, Safenkova IV, et al. A family of DNA aptamers with varied duplex region length that forms complexes with thrombin and prothrombin. FEBS Lett. 2015;589(16):2043–9.  https://doi.org/10.1016/j.febslet.2015.06.020.CrossRefGoogle Scholar
  47. 47.
    Werner A, Konarev PV, Svergun DI, Hahn U. Characterization of a fluorophore binding RNA aptamer by fluorescence correlation spectroscopy and small angle x-ray scattering. Anal Biochem. 2009;389(1):52–62.  https://doi.org/10.1016/j.ab.2009.03.018.CrossRefGoogle Scholar
  48. 48.
    Baird NJ, Ferre-D'Amare AR. Analysis of riboswitch structure and ligand binding using small-angle x-ray scattering (SAXS). Methods Mol Biol. 2014;1103:211–25.  https://doi.org/10.1007/978-1-62703-730-3_16.CrossRefGoogle Scholar
  49. 49.
    Mittelberger F, Meyer C, Waetzig GH, Zacharias M, Valentini E, Svergun DI, et al. RAID3–an interleukin-6 receptor-binding aptamer with post-selective modification-resistant affinity. RNA Biol. 2015;12(9):1043–53.  https://doi.org/10.1080/15476286.2015.1079681.CrossRefGoogle Scholar
  50. 50.
    Reinstein O, Neves MA, Saad M, Boodram SN, Lombardo S, Beckham SA, et al. Engineering a structure switching mechanism into a steroid-binding aptamer and hydrodynamic analysis of the ligand binding mechanism. Biochemistry. 2011;50(43):9368–76.  https://doi.org/10.1021/bi201361v.CrossRefGoogle Scholar
  51. 51.
    Ruigrok VJ, van Duijn E, Barendregt A, Dyer K, Tainer JA, Stoltenburg R, et al. Kinetic and stoichiometric characterisation of streptavidin-binding aptamers. Chembiochem. 2012;13(6):829–36.  https://doi.org/10.1002/cbic.201100774.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Felix N. Tomilin
    • 1
    • 2
  • Roman Moryachkov
    • 1
    • 3
  • Irina Shchugoreva
    • 2
    • 3
  • Vladimir N. Zabluda
    • 1
  • Georgy Peters
    • 4
  • Mikhail Platunov
    • 1
  • Vera Spiridonova
    • 5
  • Anastasia Melnichuk
    • 5
  • Anastasia Atrokhova
    • 5
  • Sergey S. Zamay
    • 1
    • 3
  • Sergey G. Ovchinnikov
    • 1
    • 2
  • Galina S. Zamay
    • 3
    • 6
  • Alexey Sokolov
    • 1
    • 2
  • Tatiana N. Zamay
    • 3
    • 6
  • Maxim V. Berezovski
    • 7
    Email author
  • Anna S. Kichkailo
    • 3
    • 6
    Email author
  1. 1.Kirensky Institute of PhysicsFederal Research Center KSC Siberian Branch Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Federal Research Center “Krasnoyarsk Science Center” Siberian Branch of the Russian Academy of SciencesKrasnoyarskRussia
  4. 4.NRC Kurchatov InstituteMoscowRussia
  5. 5.A.N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  6. 6.Krasnoyarsk State Medical UniversityKrasnoyarskRussia
  7. 7.Department of Chemistry and Biomolecular SciencesUniversity of OttawaOttawaCanada

Personalised recommendations