Analytical and Bioanalytical Chemistry

, Volume 411, Issue 25, pp 6711–6722 | Cite as

Wine markers in archeological potteries: detection by GC-MS at ultratrace levels

  • Laura Blanco-ZubiaguirreEmail author
  • Maitane Olivares
  • Kepa Castro
  • Jose Antonio Carrero
  • Carlos García-Benito
  • José Ángel García-Serrano
  • Julián Pérez-Pérez
  • Josefina Pérez-Arantegui
Research Paper


The detection of organic residues that remain absorbed into the pores of ceramic artifacts constitutes a source of information regarding their management. Taking into account the poor conservation state of the potteries and the low amount of the organic tracers together with the main drawbacks to get the relevant information concerning different aspects of past societies, the detection of organic biomarkers is still an analytical challenge. In this work, an improved analytical methodology to maximize the recovery of organic markers related to wine in archeological ceramics is presented. The developed method consists on the extraction of wine-related organic compounds including tartaric acid, malic acid, fumaric acid, succinic acid, citric acid, and syringic acid by means of ultrasonic probe-assisted extraction (UPAE) followed by a preconcentration step by mixed-mode strong anion exchange and reversed-phase solid-phase extraction (SPE) and a derivatization step prior to analysis by means of gas chromatography-mass spectrometry (GC-MS). Finally, the method was applied to real archeological ceramic fragments (two dolia), suspected to have been used to store wine, together with organic residues found inside two amphorae from Zaragoza (Spain).

Graphical abstract


Wine Organic markers Archeological ceramics Mixed-mode solid-phase extraction Gas chromatography-mass spectrometry 



Laura Blanco-Zubiaguirre is grateful to the University of the Basque Country (UPV/EHU) for her post-doctoral fellowship (DOKBERRI 2018-II).


This work has been financially supported the Government of the Basque Country (Research Groups of Excellence, Consolidated Groups Program, ref. IT-742-13).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_2044_MOESM1_ESM.pdf (140 kb)
ESM 1 (PDF 140 kb)


  1. 1.
    Roffet-Salque M, Dunne J, Altoft DT, Casanova E, Cramp LJE, Smyth J, et al. From the inside out: upscaling organic residue analyses of archaeological ceramics. J Archaeol Sci Rep. 2017;16:627–40.Google Scholar
  2. 2.
    Pecci A, Domínguez-Bella S, Buonincontri MP, Miriello D, De Luca R, Di Pasquale G, et al. Combining residue analysis of floors and ceramics for the study of activity areas at the Garum shop at Pompeii. Archaeol Anthropol Sci. 2018;10(2):485–502.CrossRefGoogle Scholar
  3. 3.
    Dunne J, Grillo KM, Casanova E, Whelton HL, Evershed RP. Pastoralist Foodways recorded in organic residues from pottery vessels of modern communities in Samburu, Kenya. J Archaeol Method and Theory. 2019;26(2):619–42.CrossRefGoogle Scholar
  4. 4.
    Valamoti SM, Pagnoux C, Ntinou M, Bouby L, Bonhomme V, Terral J. More than meets the eye: new archaeobotanical evidence on Bronze Age viticulture and wine making in the Peloponnese, Greece. Veg Hist Archaeobot 2019.Google Scholar
  5. 5.
    Jerkovic I, Marijanovic Z, Gugic M, Roje M. Chemical profile of the organic residue from ancient amphora found in the adriatic sea determined by direct GC and GC-MS analysis. Molecules. 2011;16(9):7936–48.CrossRefGoogle Scholar
  6. 6.
    Pecci A, Cau Ontiveros MT, Garnier N. Identifying wine and oil production: analysis of residues from Roman and late antique plastered vats. J Archaeol Sci. 2013;40(12):4491–8.CrossRefGoogle Scholar
  7. 7.
    McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR, Moreau RA, et al. Fermented beverages of pre- and proto-historic China. Proc Natl Acad Sci U S A. 2004;101(51):17593–8.CrossRefGoogle Scholar
  8. 8.
    Núñez FJ. The Tyrian cemetery of al-bass and the role of ceramics in the Phoenician funerary ritual. Levant. 2017;49(2):174–91.CrossRefGoogle Scholar
  9. 9.
    Arobba D, Bulgarelli F, Camin F, Caramiello R, Larcher R, Martinelli L. Palaeobotanical, chemical and physical investigation of the content of an ancient wine amphora from the northern Tyrrhenian sea in Italy. J Archaeol Sci. 2014;45:226–33.CrossRefGoogle Scholar
  10. 10.
    Barnard H, Dooley AN, Areshian G, Gasparyan B, Faull KF. Chemical evidence for wine production around 4000 BCE in the late chalcolithic near eastern highlands. J Archaeol Sci. 2011;38(5):977–84.CrossRefGoogle Scholar
  11. 11.
    Garnier N, Valamoti SM. Prehistoric wine-making at Dikili Tash (Northern Greece): integrating residue analysis and archaeobotany. J Archaeol Sci. 2016;74(Supplement C):195–206.CrossRefGoogle Scholar
  12. 12.
    Hopkins J, Armitage RA. Characterizing organic residues on ceramics by direct analysis in real time time-of-flight mass spectrometry. ACS Symp Ser. 2012;1103:131–42.CrossRefGoogle Scholar
  13. 13.
    Manzano E, Cantarero S, García A, Adroher A, Vílchez JL. A multi-analytical approach applied to the archaeological residues in Iberian glasses. Earliest evidences on the consumption of fermented beverages in votive rituals. Microchem J. 2016;129(Supplement C):286–92.CrossRefGoogle Scholar
  14. 14.
    McGovern PE, Hall GR. Charting a future course for organic residue analysis in archaeology. J Archaeol Method Theory. 2015.Google Scholar
  15. 15.
    Teodor ED, Badea GI, Alecu A, Calu L, Radu GL. Interdisciplinary study on pottery experimentally impregnated with wine. Chem Pap. 2014;68(8):1022–9.CrossRefGoogle Scholar
  16. 16.
    Guasch-Jané MR. The meaning of wine in Egyptian tombs: the three amphorae from Tutankhamun's burial chamber. Antiquity. 2011;85(329):851–8.CrossRefGoogle Scholar
  17. 17.
    Allevato E, Buonincontri M, Vairo M, Pecci A, Cau MA, Yoneda M, et al. Persistence of the cultural landscape in Campania (southern Italy) before the AD 472 Vesuvius eruption: archaeoenvironmental data. J Archaeol Sci. 2012;39(2):399–406.CrossRefGoogle Scholar
  18. 18.
    Pecci A, Giorgi G, Salvini L, Cau Ontiveros MÁ. Identifying wine markers in ceramics and plasters using gas chromatography-mass spectrometry. Experimental and archaeological materials. J Archaeol Sci. 2013;40(1):109–15.CrossRefGoogle Scholar
  19. 19.
    Pecci A, Clarke J, Thomas M, Muslin J, van der Graaff I, Toniolo L, et al. Use and reuse of amphorae. Wine residues in Dressel 2–4 amphorae from Oplontis Villa B (Torre Annunziata, Italy). J Archaeol Sci Rep. 2017;12:515–21.Google Scholar
  20. 20.
    Zhang T, Xu S, Li Y, Wen R, Yang G. Orthogonal optimization of extraction and analysis for red wine residues in simulated and archaeological materials using LC/MS and HPLC methods. Microchem J. 2018;142:175–80.CrossRefGoogle Scholar
  21. 21.
    Inserra F, Pecci A, Ontiveros MÁC, Buxó JR. Organic residues analysis of late antique pottery from Plaça major-Horts de can Torras (Castellar del Vallés, Catalonia, Spain). Period Mineral. 2015;84(1):123–38.Google Scholar
  22. 22.
    Romanus K, Baeten J, Poblome J, Accardo S, Degryse P, Jacobs P, et al. Wine and olive oil permeation in pitched and non-pitched ceramics: relation with results from archaeological amphorae from Sagalassos. Turkey J Archaeol Sci. 2009;36(3):900–9.CrossRefGoogle Scholar
  23. 23.
    Petit-Domínguez MD, García-Giménez R, Rucandio MI. Chemical characterization of Iberian amphorae and tannin determination as indicative of amphora contents. Mikrochim Acta. 2003;141(1–2):63–8.CrossRefGoogle Scholar
  24. 24.
    Stern B, Heron C, Tellefsen T, Serpico M. New investigations into the Uluburun resin cargo. J Archaeol Sci. 2008;35(8):2188–203.CrossRefGoogle Scholar
  25. 25.
    Rasmussen KL, Gunneweg J, Van Der Plicht J, Kralj Cigic I, Bond AD, Svensmark B, et al. On the age and content of Jar-35-a sealed and intact storage jar found on the southern plateau of Qumran. Archaeometry. 2011;53(4):791–808.CrossRefGoogle Scholar
  26. 26.
    Guasch-Jané MR, Ibern-Gómez M, Andrés-Lacueva C, Jáuregui O, Lamuela-Raventós RM. Liquid chromatography with mass spectrometry in tandem mode applied for the identification of wine markers in residues from ancient Egyptian vessels. Anal Chem. 2004;76(6):1672–7.CrossRefGoogle Scholar
  27. 27.
    Blanco-Zubiaguirre L, Arrieta N, Iturregui A, Martinez-Arkarazo I, Olivares M, Castro K, et al. Focused ultrasound solid-liquid extraction for the determination of organic biomarkers in beachrocks. Ultrason Sonochem. 2015;27:430–9.CrossRefGoogle Scholar
  28. 28.
    Blanco-Zubiaguirre L, Olivares M, Castro K, Iñañez JG, Madariaga JM. An alternative analytical method based on ultrasound micro bath hydrolysis and GC-MS analysis for the characterization of organic biomarkers in archaeological ceramics. Anal Bioanal Chem. 2016;408(28):8001–12.CrossRefGoogle Scholar
  29. 29.
    Lluveras A, Bonaduce I, Andreotti A, Colombini MP. GC/MS analytical procedure for the characterization of glycerolipids, natural waxes, terpenoid resins, proteinaceous and polysaccharide materials in the same paint microsample avoiding interferences from inorganic media. Anal Chem. 2010;82(1):376–86.CrossRefGoogle Scholar
  30. 30.
    Colombini MP, Modugno F. Organic mass spectrometry in art and archaeology: John Wiley & Sons, Ltd; 2009. p. 1–493.Google Scholar
  31. 31.
    Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD. Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction. Chem Commun. 1998;16:1765–6.CrossRefGoogle Scholar
  32. 32.
    Gilart N, Borrull F, Fontanals N, Marcé RM. Selective materials for solid-phase extraction in environmental analysis. Trends Environ Anal. 2014;1:e8–e18.CrossRefGoogle Scholar
  33. 33.
    Blanco-Zubiaguirre L, Cabezas A, Carrero JA, Fernández LÁ, Olivares M, Castro K. Mixed-mode SPE followed by GC-MS analysis to determine water soluble organic compounds in aerosol and historical mortars affected by marine atmosphere: the case of Punta Begoña Galleries (Getxo, north of Spain). Talanta. 2018;189:31–8.CrossRefGoogle Scholar
  34. 34.
    Ribechini E, Modugno F, Colombini MP, Evershed RP. Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass unguentaria. J Chromatogr A. 2008;1183(1–2):158–69.CrossRefGoogle Scholar
  35. 35.
    Colombini MP, Modugno F, Ribechini E. Direct exposure electron ionization mass spectrometry and gas chromatography/mass spectrometry techniques to study organic coatings on archaeological amphorae. J Mass Spectrom. 2005;40(5):675–87.CrossRefGoogle Scholar
  36. 36.
    Colombini MP, Giachi G, Modugno F, Ribechini E. Characterisation of organic residues in pottery vessels of the Roman age from Antinoe (Egypt). Microchem J. 2005;79(1–2):83–90.CrossRefGoogle Scholar
  37. 37.
    McGovern P, Jalabadze M, Batiuk S, Callahan MP, Smith KE, Hall GR, et al. Early Neolithic wine of Georgia in the South Caucasus. Proc Natl Acad Sci U S A. 2017;114(48):E10309–18.CrossRefGoogle Scholar
  38. 38.
    Pecci A, Ontiveros MÁC, Valdambrini C, Inserra F. Understanding residues of oil production: chemical analyses of floors in traditional mills. J Archaeol Sci. 2013;40(2):883–93.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Laura Blanco-Zubiaguirre
    • 1
    Email author
  • Maitane Olivares
    • 1
    • 2
  • Kepa Castro
    • 1
  • Jose Antonio Carrero
    • 1
  • Carlos García-Benito
    • 3
  • José Ángel García-Serrano
    • 3
  • Julián Pérez-Pérez
    • 3
  • Josefina Pérez-Arantegui
    • 4
  1. 1.Department of Analytical ChemistryUniversity of the Basque Country UPV/EHULeioaSpain
  2. 2.Research Centre for Experimental Marine Biology and Biotechnology (PIE)University of the Basque Country (UPV/ EHU)PlentziaSpain
  3. 3.Centro de Estudios TuriasonensesTarazonaSpain
  4. 4.Instituto Universitario de investigación en Ciencias Ambientales de Aragón (IUCA)Universidad de ZaragozaZaragozaSpain

Personalised recommendations