Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 25, pp 6667–6676 | Cite as

Electrochemical aptasensor for the detection of HER2 in human serum to assist in the diagnosis of early stage breast cancer

  • Giselda BezerraEmail author
  • Carolina Córdula
  • Danielly Campos
  • Gustavo Nascimento
  • Natália Oliveira
  • Maria Aparecida Seabra
  • Valeria Visani
  • Sampaio Lucas
  • Iasmim Lopes
  • Joana Santos
  • Francisco XavierJr
  • Maria Amélia Borba
  • Danyelly Martins
  • José Lima-Filho
Research Paper

Abstract

Human epidermal growth factor receptor-2 (HER2) is an important biomarker in the diagnosis and prognosis of breast cancer. This work aimed to develop an aptasensor to detect HER2 in human serum. HER2 aptamer was immobilized by electrostatic adsorption on the surface of a homemade screen-printed electrode modified with poly-l-lysine. Measurements were made by differential pulse voltammetry using methylene blue as a redox indicator. A calibration curve was constructed (R2 = 0.997) using different concentrations of HER2 protein (10–60 ng/mL) in PBS buffer (pH 7.4), with a detection limit of 3.0 ng/mL. The aptasensor showed good reproducibility with relative standard deviations (RSDs) of 3% and remained stable for 3 days with an RSD around 2%. When the tests were performed with serum from a healthy woman, a peak of 6.72 μA was found without the addition of the protein. When we tested the serum of a woman with HER2+ breast cancer, we obtained a signal of 2.65 μA; the same pattern was found when adding to protein in serum control, i.e., the higher the concentration of protein, the lower the signal. The aptasensor was characterized by scanning electron microscopy and isothermal titration calorimetry (ITC), showing excellent interaction between aptamer and target protein. The results revealed a promising and sensitive tool capable of detecting HER2 protein in human serum with albumin depletion, aiding in the molecular diagnosis of breast cancer.

Graphical abstract

Keywords

Aptasensor Aptamer Diagnosis Breast cancer HER2 Screen-printed electrode 

Notes

Acknowledgments

We would like to thank Laboratório de Imunopatologia Keizo Asami (LIKA), Federal University of Pernambuco UFPE-Brazil. We would like to express our sincere gratitude to all those who helped us develop this research.

Funding

This research did not receive any specific grant from funding bodies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

References

  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018.  https://doi.org/10.3322/caac.21492.
  2. 2.
    Medeiros GC. Determinants of the time between breast cancer diagnosis and initiation of treatment in Brazilian women. Cad Saude Publica. 2015.  https://doi.org/10.1590/0102-311X00048514.
  3. 3.
    Unger-saldaña K. Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J Clin Oncol. 2014.  https://doi.org/10.5306/wjco.v5.i3.465.
  4. 4.
    Vondeling GT, Menezes GL, Dvortsin EP, Jansman FGA, Konings IR, Postma MJ, et al. Burden of early, advanced and metastatic breast cancer in the Netherlands. BMC Cancer. 2018.  https://doi.org/10.1186/s12885-018-4158-3.
  5. 5.
    Zhang X-H, Xiao C. Diagnostic value of nineteen different imaging methods for patients with breast cancer: a network meta-analysis. Cell Physiol Biochem. 2018.  https://doi.org/10.1159/000489443.
  6. 6.
    Khanjani F, Sajedi RH, Hasannia S. Rapid screening of drug candidates against EGFR/HER2 signaling pathway using fluorescence assay. Anal Bioanal Chem. 2018;410(30):7827–35.CrossRefGoogle Scholar
  7. 7.
    Tagliafico AS, Valdora F, Mariscotti G, Durando M, Nori J, La Forgia D, et al. An exploratory radiomics analysis on digital breast tomosynthesis in women with mammographically negative dense breasts. Breast. 2018.  https://doi.org/10.1016/j.breast.2018.04.016.
  8. 8.
    Efared B, Sidibé IS, Gamrani S, El Otmani I, Erregad F, Hammas N, et al. The assessment of HER2 gene status by fluorescence in situ hybridization in invasive breast carcinomas with equivocal HER2 immunostaining: experience from a single institution. Int J Surg Pathol. 2018.  https://doi.org/10.1177/1066896918767546.
  9. 9.
    Carney WP. Circulating oncoproteins HER2/neu, EGFR and CAIX (MN) as novel cancer biomarkers. Expert Rev Mol Diagn. 2007;7(3):309–19.CrossRefGoogle Scholar
  10. 10.
    Marques RCB, Viswanathan S, Nouws HPA, Delerue-Matos C, González-García MB. Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. Talanta. 2014;129:594–9.  https://doi.org/10.1016/j.talanta.2014.06.035.CrossRefGoogle Scholar
  11. 11.
    Gohring JT, Dale PS, Fan X. Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor. Sensors Actuators B Chem. 2010;146(1):226–30.CrossRefGoogle Scholar
  12. 12.
    Chun L, Kim SE, Cho M, Choe WS, Nam J, Lee DW, et al. Electrochemical detection of HER2 using single stranded DNA aptamer modified gold nanoparticles electrode. Sensors Actuators B Chem. 2013;186:446–50.  https://doi.org/10.1016/j.snb.2013.06.046.CrossRefGoogle Scholar
  13. 13.
    Pfeiffer F, Mayer G. Selection and biosensor application of aptamers for small molecules. Front Chem. 2016.  https://doi.org/10.3389/fchem.2016.00025.
  14. 14.
    Salimian R, Kékedy-Nagy L, Ferapontova EE. Specific picomolar detection of a breast cancer biomarker HER-2/neu protein in serum: electrocatalytically amplified electroanalysis by the aptamer/PEG-modified electrode. ChemElectroChem. 2017.  https://doi.org/10.1002/celc.201700025.
  15. 15.
    Emami M, Shamsipur M, Saber R, Irajirad R. An electrochemical immunosensor for detection of a breast cancer biomarker based on antiHER2–iron oxide nanoparticle bioconjugates. Analyst. 2014.  https://doi.org/10.1039/c4an00183d.
  16. 16.
    Eletxigerra U, Martinez-Perdiguero J, Merino S, Barderas R, Torrente-Rodríguez RM, Villalonga R, et al. Amperometric magnetoimmunosensor for ErbB2 breast cancer biomarker determination in human serum, cell lysates and intact breast cancer cells. Biosens Bioelectron. 2015.  https://doi.org/10.1016/j.bios.2015.03.017.
  17. 17.
    Arkan E, Saber R, Karimi Z, Shamsipur M. A novel antibody-antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode. Anal Chim Acta. 2015.  https://doi.org/10.1016/j.aca.2015.03.022.
  18. 18.
    Shamsipur M, Emami M, Farzin L, Saber R. A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosens Bioelectron. 2018.  https://doi.org/10.1016/j.bios.2017.12.022.
  19. 19.
    Freitas M, Nouws HPA, Delerue-Matos C. Electrochemical sensing platforms for HER2-ECD breast cancer biomarker detection. Electroanalysis. 2018.  https://doi.org/10.1002/elan.201800537.
  20. 20.
    Nascimento GA, Souza EVM, Campos-Ferreira DS, Arruda MS, Castelletti CHM, Wanderley MSO, et al. Electrochemical DNA biosensor for bovine papillomavirus detection using polymeric film on screen-printed electrode. Biosens Bioelectron. 2012;38(1):61–6.CrossRefGoogle Scholar
  21. 21.
    Ouyang Y, Cai X, Shi QS, Liu L, Wan D, Tan S, et al. Poly-l-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity. Colloids Surf B: Biointerfaces. 2013.  https://doi.org/10.1016/j.colsurfb.2013.01.073.
  22. 22.
    Sun W, Zhang Y, Ju X, Li G, Gao H, Sun Z. Electrochemical deoxyribonucleic acid biosensor based on carboxyl functionalized graphene oxide and poly-l-lysine modified electrode for the detection of tlh gene sequence related to vibrio parahaemolyticus. Anal Chim Acta. 2012.  https://doi.org/10.1016/j.aca.2012.09.009.
  23. 23.
    Bang GS, Cho S, Kim BG. A novel electrochemical detection method for aptamer biosensors. Biosens Bioelectron. 2005;21(6):863–70.CrossRefGoogle Scholar
  24. 24.
    Rohs R, Sklenar H, Lavery R, Ro B. Methylene blue binding to DNA with alternating GC base sequence: a modeling study. J Am Chem Soc. 2000;11:2860–6.CrossRefGoogle Scholar
  25. 25.
    Abnous K, Danesh NM, Alibolandi M, Ramezani M, Taghdisi SM. Amperometric aptasensor for ochratoxin A based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker methylene blue. Microchim Acta. 2017;184:1151–9.CrossRefGoogle Scholar
  26. 26.
    Chou J, Yan S, Liao Y, Lai C, Wu Y. Fabrication of flexible arrayed lactate biosensor based on immobilizing LDH-NAD+ on NiO film modified by GO and MBs. Sensors (Basel). 2017.  https://doi.org/10.3390/s17071618.
  27. 27.
    Cortez CM, Silva D, Silva CMC, Missailidis S. Interactions of aptamers with sera albumins. Spectrochim Acta A Mol Biomol Spectrosc. 2012;95:270–5.CrossRefGoogle Scholar
  28. 28.
    Jarczewska M, Kékedy-Nagy L, Nielsen JS, Campos R, Kjems J, Malinowska E, et al. Electroanalysis of pM-levels of urokinase plasminogen activator in serum by phosphorothioated RNA aptamer. Analyst. 2015;140(11):3794–802.CrossRefGoogle Scholar
  29. 29.
    Cai S, Yan J, Xiong H, Liu Y, Peng D, Liu Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst. 2018.  https://doi.org/10.1039/C8AN01467A.
  30. 30.
    Björhall K, Miliotis T, Davidsson P. Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples. Proteomics. 2005;5(1):307–17.CrossRefGoogle Scholar
  31. 31.
    Bronsveld HK, De Bruin ML, Wesseling J, Sanders J, Hofland I, Jensen V, et al. The association of diabetes mellitus and insulin treatment with expression of insulin-related proteins in breast tumors. BMC Cancer. 2018.  https://doi.org/10.1186/s12885-018-4072-8.
  32. 32.
    Khalid S, Hwang D, Babichev Y, Kolli R, Altamentova S, Koren S, et al. Evidence for a tumor promoting effect of high-fat diet independent of insulin resistance in HER2/Neu mammary carcinogenesis. Breast Cancer Res Treat. 2010;122(3):647–59.CrossRefGoogle Scholar
  33. 33.
    Pang Y, Xu Z, Sato Y, Nishizawa S, Teramae N. Base pairing at the abasic site in DNA duplexes and its application in adenosine aptasensors. ChemBioChem. 2012;13(3):436–42.CrossRefGoogle Scholar
  34. 34.
    Campos-Ferreira DS, Souza EVM, Nascimento GA, Zanforlin DML, Arruda MS, Beltrão MFS, et al. Electrochemical DNA biosensor for the detection of human papillomavirus E6 gene inserted in recombinant plasmid. Arab J Chem. 2016;9(3):443–50.CrossRefGoogle Scholar
  35. 35.
    Yang W, Ozsoz M, Hibbert DB, Gooding JJ. Evidence for the direct interaction between methylene blue and guanine bases using DNA-modified carbon paste electrodes. Electroanalysis. 2002;14(18):1299–302.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Giselda Bezerra
    • 1
    Email author
  • Carolina Córdula
    • 1
  • Danielly Campos
    • 1
  • Gustavo Nascimento
    • 1
  • Natália Oliveira
    • 1
  • Maria Aparecida Seabra
    • 1
  • Valeria Visani
    • 1
  • Sampaio Lucas
    • 1
  • Iasmim Lopes
    • 1
  • Joana Santos
    • 1
  • Francisco XavierJr
    • 1
  • Maria Amélia Borba
    • 1
  • Danyelly Martins
    • 1
  • José Lima-Filho
    • 1
  1. 1.Laboratório de Imunopatologia Keizo Asami – LIKAUniversidade Federal de Pernambuco – UFPERecifeBrazil

Personalised recommendations