Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 25, pp 6645–6653 | Cite as

Carbon dots as an “on-off-on” fluorescent probe for detection of Cu(II) ion, ascorbic acid, and acid phosphatase

  • Xin Ma
  • Shijun Lin
  • Yunfei Dang
  • Yu DaiEmail author
  • Xiaojin ZhangEmail author
  • Fan XiaEmail author
Research Paper
  • 112 Downloads

Abstract

Carbon dot (CD)-based fluorescent probes have been widely exploited; however, multi-component detection using CDs without tedious surface modification is always a challenging task. Here, we develop a convenient and simple CD-based “on-off-on” fluorescent probe for detection of copper(II) ion (Cu2+), ascorbic acid (AA), and acid phosphatase (ACP). Cu2+ leads to the fluorescence quenching of CDs. The limit of detection (LOD) for Cu2+ is 2.4 μM. When AA is added into the CDs + Cu2+ solution, Cu2+ is reduced by AA to Cu+, causing the fluorescence recovery of CDs. The fluorescent intensity linearly correlates with the concentration of AA in the range of 100–2800 μM with LOD of 60 μM. Besides, the probe has potential application for detection of AA in real samples such as VC tablets, orange juice, and fresh orange. The probe can also indirectly detect ACP that enzymatically hydrolyzes ascorbic acid-phosphate (AAP) to produce AA. This work expands the application of CDs in the multi-component detection and provides a facile fluorescent probe for detection of AA in real samples.

Graphical abstract

Keywords

Carbon dots Fluorescent detection Copper(II) ion Ascorbic acid Acid phosphatase 

Notes

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 21603196 and 51703209) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Nos. CUGL170406 and CUG170601).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Supplementary material

216_2019_2038_MOESM1_ESM.pdf (109 kb)
ESM 1 (PDF 109 kb)

References

  1. 1.
    Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126(40):12736–7.CrossRefGoogle Scholar
  2. 2.
    Dong YQ, Cai JH, You X, Chi YW. Sensing applications of luminescent carbon based dots. Analyst. 2015;140(22):7468–86.CrossRefGoogle Scholar
  3. 3.
    Wang YF, Hu AG. Carbon quantum dots: synthesis, properties and applications. J Mater Chem C. 2014;2(34):6921–39.CrossRefGoogle Scholar
  4. 4.
    Sun XC, Lei Y. Fluorescent carbon dots and their sensing applications. Trends Anal Chem. 2017;89:163–80.CrossRefGoogle Scholar
  5. 5.
    Yan FY, Jiang YX, Sun XD, Bai ZJ, Zhang Y, Zhou XG. Surface modification and chemical functionalization of carbon dots: a review. Microchim Acta. 2018;185(9):424.CrossRefGoogle Scholar
  6. 6.
    Zheng M, Xie ZG, Qu D, Li D, Du P, Jing XB, et al. On off on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces. 2013;5(24):13242–7.CrossRefGoogle Scholar
  7. 7.
    Basu A, Suryawanshi A, Kumawat B, Dandia A, Guin D, Ogale SB. Starch (tapioca) to carbon dots: an efficient green approach to an on-off-on photoluminescence probe for fluoride ion sensing. Analyst. 2015;140(6):1837–41.CrossRefGoogle Scholar
  8. 8.
    Han CP, Wang R, Wang KY, Xu HT, Sui MR, Li JJ, et al. Highly fluorescent carbon dots as selective and sensitive “on-off-on” probes for iron(III) ion and apoferritin detection and imaging in living cells. Biosens Bioelectron. 2016;83:229–36.CrossRefGoogle Scholar
  9. 9.
    Zhao FJ, Qian JL, Quan FF, Wu CX, Zheng Y, Zhou L. Aconitic acid derived carbon dots as recyclable “on-off-on” fluorescent nanoprobes for sensitive detection of mercury(II) ions, cysteine and cellular imaging. RSC Adv. 2017;7(70):44178–85.CrossRefGoogle Scholar
  10. 10.
    Lqbal A, Lqbal K, Xu LG, Li B, Gong DY, Liu XY, et al. Heterogeneous synthesis of nitrogen-doped carbon dots prepared via anhydrous citric acid and melamine for selective and sensitive turn on-off-on detection of Hg (II), glutathione and its cellular imaging. Sensors Actuators B Chem. 2018;255:1130–8.CrossRefGoogle Scholar
  11. 11.
    Gao G, Jiang YW, Jia HR, Yang JJ, Wu FG. On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon. 2018;134:232–43.CrossRefGoogle Scholar
  12. 12.
    Gao XX, Zhou X, Ma YF, Qian T, Wang CP, Chu FX. Facile and cost-effective preparation of carbon quantum dots for Fe3+ ion and ascorbic acid detection in living cells based on the “on-off-on” fluorescence principle. Appl Surf Sci. 2019;469:911–6.CrossRefGoogle Scholar
  13. 13.
    Gaggelli E, Kozlowski H, Valensin D, Valensin G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev. 2006;106(6):1995–2044.CrossRefGoogle Scholar
  14. 14.
    Sivaraman G, Iniya M, Anand T, Kotla NG, Sunnapu O, Singaravadivel S, et al. Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord Chem Rev. 2018;357:50–104.CrossRefGoogle Scholar
  15. 15.
    Guo YM, Zhang LF, Zhang SS, Yang Y, Chen XH, Zhang MC. Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens Bioelectron. 2015;63:61–71.CrossRefGoogle Scholar
  16. 16.
    Purbia R, Paria S. A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosens Bioelectron. 2016;79:467–75.CrossRefGoogle Scholar
  17. 17.
    Yang R, Guo XF, Jia LH, Zhang Y. A fluorescent “on-off-on” assay for selective recognition of Cu(II) and glutathione based on modified carbon nanodots, and its application to cellular imaging. Microchim Acta. 2017;184(4):1143–50.CrossRefGoogle Scholar
  18. 18.
    Chen J, Li Y, Lv K, Zhong WB, Wang H, Wu Z, et al. Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(II) ion and sulfide anion in aqueous media and its imaging in live cells. Sensors Actuators B Chem. 2016;224:298–306.CrossRefGoogle Scholar
  19. 19.
    Haldon E, Nicasio MC, Perez PJ. Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. Org Biomol Chem. 2015;13(37):9528–50.CrossRefGoogle Scholar
  20. 20.
    Achadu OJ, Revaprasadu N. Tannic acid-derivatized graphitic carbon nitride quantum dots as an "on-off-on" fluorescent nanoprobe for ascorbic acid via copper(II) mediation. Microchim Acta. 2019;186(2):87.CrossRefGoogle Scholar
  21. 21.
    Qian ZS, Chai LJ, Tang C, Huang YY, Chen JR, Feng H. A fluorometric assay for acetylcholinesterase activity and inhibitor screening with carbon quantum dots. Sensors Actuators B Chem. 2016;222:879–86.CrossRefGoogle Scholar
  22. 22.
    Qu ZY, Li N, Na WD, Su XG. A novel fluorescence “turn off - on” nanosensor for sensitivity detection acid phosphatase and inhibitor based on glutathione-functionalized graphene quantum dots. Talanta. 2019;192:61–8.CrossRefGoogle Scholar
  23. 23.
    Luo XL, Zhang WG, Han Y, Chen XM, Zhu L, Tang WZ et al. N,S co-doped carbon dots based fluorescent “on-off-on” sensor for determination of ascorbic acid in common fruits. Food Chem 2018;258:214–221.Google Scholar
  24. 24.
    Qian ZS, Chai LJ, Huang YY, Tang C, Shen JJ, Chen JR, et al. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosens Bioelectron. 2015;68:675–80.CrossRefGoogle Scholar
  25. 25.
    Qian ZS, Chai LJ, Tang C, Huang YY, Chen JR, Feng H. Carbon quantum dots-based recyclable real-time fluorescence assay for alkaline phosphatase with adenosine triphosphate as substrate. Anal Chem. 2015;87(5):2966–73.CrossRefGoogle Scholar
  26. 26.
    Qian ZS, Chai LJ, Zhou Q, Huang YY, Tang C, Chen JR, et al. Reversible fluorescent nanoswitch based on carbon quantum dots nanoassembly for real-time acid phosphatase activity monitoring. Anal Chem. 2015;87(14):7332–9.CrossRefGoogle Scholar
  27. 27.
    Liu C, Tang B, Zhang S, Zhou MM, Yang ML, Liu YF, et al. Photoinduced electron transfer mediated by coordination between carboxyl on carbon nanodots and Cu2+ quenching photoluminescence. J Phys Chem C. 2018;122(6):3662–8.CrossRefGoogle Scholar
  28. 28.
    Praneerad J, Thongsai N, Supchocksoonthorn P, Kladsomboon S, Paoprasert P. Multipurpose sensing applications of biocompatible radish-derived carbon dots as Cu2+ and acetic acid vapor sensors. Spectroc Acta Pt A-Molec Biomolec Spectr. 2019;211:59–70.CrossRefGoogle Scholar
  29. 29.
    Li LB, Wang C, Luo JX, Guo QW, Liu KY, Liu K, et al. Fe3+-functionalized carbon quantum dots: a facile preparation strategy and detection for ascorbic acid in rat brain microdialysates. Talanta. 2015;144:1301–7.CrossRefGoogle Scholar
  30. 30.
    Fong JFY, Chin SF, Ng SM. A unique “turn-on” fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe. Biosens Bioelectron. 2016;85:844–52.CrossRefGoogle Scholar
  31. 31.
    Shamsipur M, Molaei K, Molaabasi F, Alipour M, Alizadeh N, Hosseinkhani S, et al. Facile preparation and characterization of new green emitting carbon dots for sensitive and selective off/on detection of Fe3+ ion and ascorbic acid in water and urine samples and intracellular imaging in living cells. Talanta. 2018;183:122–30.CrossRefGoogle Scholar
  32. 32.
    Huang YY, Zhou J, Feng H, Zheng JT, Ma HM, Liu WD, et al. A dual-channel fluorescent chemosensor for discriminative detection of glutathione based on functionalized carbon quantum dots. Biosens Bioelectron. 2016;86:748–55.CrossRefGoogle Scholar
  33. 33.
    Guo Y, Yang LL, Li WW, Wang XF, Shang YH, Li BX. Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine. Microchim Acta. 2016;183(4):1409–16.CrossRefGoogle Scholar
  34. 34.
    Liao S, Huang XQ, Yang H, Chen XQ. Nitrogen-doped carbon quantum dots as a fluorescent probe to detect copper ions, glutathione, and intracellular pH. Anal Bioanal Chem. 2018;410(29):7701–10.CrossRefGoogle Scholar
  35. 35.
    Sun S, Jiang K, Qian SH, Wang YH, Lin HW. Applying carbon dots-metal ions ensembles as a multichannel fluorescent sensor array: detection and discrimination of phosphate anions. Anal Chem. 2017;89(10):5542–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina

Personalised recommendations