Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 25, pp 6615–6624 | Cite as

Magnetic immunochromatographic test for histamine detection in wine

  • Amanda Moyano
  • María Salvador
  • José C. Martínez-García
  • Vlad Socoliuc
  • Ladislau Vékás
  • Davide Peddis
  • Miguel A. Alvarez
  • María Fernández
  • Montserrat RivasEmail author
  • M. Carmen Blanco-LópezEmail author
Research Paper
  • 81 Downloads
Part of the following topical collections:
  1. Nanoparticles for Bioanalysis

Abstract

Histamine, a biogenic amine, is abundant in fermented foods and beverages, notably wine. A high intake of this monoamine may produce adverse reactions in humans, which may be severe in individuals with a reduced capacity to catabolise extrinsic histamine. Thus, control of histamine concentration during wine production and before distribution is advisable. Simple, rapid, point-of-use bioanalytical platforms are needed because traditional methods for the detection and quantification of histamine are expensive and time-consuming. This work applies the lateral flow immunoassay technique to histamine detection. Superparamagnetic particle labels, and an inductive sensor designed to read the test line in the immunoassay, enable magnetic quantification of the molecule. The system is calibrated with histamine standards in the interval of interest for wine production. A commercial optical strip reader is used for comparison measurements. The lateral flow system has a limit of detection of 1.2 and 1.5 mg/L for the inductive and optical readers, respectively. The capability of the inductive system for histamine quantification is demonstrated for wine samples at different processing points (at the end of alcoholic fermentation, at the end of malolactic fermentation, in freshly bottled wine, and in reserve wine). The results are validated by ultra-high-performance liquid chromatography.

Graphical abstract

Keywords

Biogenic amines Histamine Lateral flow immunoassay Superparamagnetic nanoparticles Histamine biosensor 

Notes

Acknowledgements

Wine samples were kindly provided by Juan M. Redondo from DOP Vino de Cangas. The authors acknowledge the technical assistance of Begoña Redruello (IPLA) in the chromatographic analysis in wine samples.

Funding information

This work was financially supported by the Spanish Ministry of Economy and Competitiveness under projects MAT2017-84959-C2-1-R, MAT2016-81955-REDT, and AGL2016-78708-R; the Council of Gijón-IUTA under grant SV-18-GIJON-1-27; and the Principality of Asturias under project IDI/2018/000185.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ordóñez JL, Troncoso AM, García-Parrilla MDC, Callejón RM. Recent trends in the determination of biogenic amines in fermented beverages – a review. Anal Chim Acta. 2016;939:10–25.CrossRefGoogle Scholar
  2. 2.
    Daniel ML, MaCruz M, Victor L, Miguel AA, María F. Biogenic amines in dairy products. Crit Rev Food Sci Nutr. 51(7):691–703.Google Scholar
  3. 3.
    Ladero V, Calles-Enriquez M, Fernandez M, Alvarez MA. Toxicological effects of dietary biogenic amines. Curr Nutr Food Sci. 2010;6(2):145–56.CrossRefGoogle Scholar
  4. 4.
    Bodmer S, Imark C, Kneubühl M. Biogenic amines in foods: histamine and food processing. Inflamm Res. 1999;48(6):296–300.CrossRefGoogle Scholar
  5. 5.
    FDA. Fish and fishery products hazards and controls guidance, Fourth Edition, Chapter 7. April 2011;113.Google Scholar
  6. 6.
    EU Directive, Regulation (EC) No 1441/2007 of 5 December 2007. Official Journal of European Union 2007.Google Scholar
  7. 7.
    Bauza T, Blaise A, Daumas F, Cabanis JC. Determination of biogenic amines and their precursor amino acids in wines of the Vallée du Rhône by high-performance liquid chromatography with precolumn derivatization and fluorimetric detection. J Chromatogr A. 1995;707(2):373–9.CrossRefGoogle Scholar
  8. 8.
    Landete JM, Ferrer S, Polo L, Pardo I. Biogenic amines in wines from three Spanish regions. J Agric Food Chem. 2005;53(4):1119–24.CrossRefGoogle Scholar
  9. 9.
    Konakovsky V, Focke M, Hoffmann-Sommergruber K, Schmid R, Scheiner O, Moser P, et al. Levels of histamine and other biogenic amines in high-quality red wines. Food Addit Contam A. 2011;28(4):408–16.CrossRefGoogle Scholar
  10. 10.
    Caruso M, Fiore C, Contursi M, Salzano G, Paparella A, Romano P. Formation of biogenic amines as criteria for the selection of wine yeasts. World J Microbiol Biotechnol. 2002;18(2):159–63.CrossRefGoogle Scholar
  11. 11.
    Goñi DT, Azpilicueta CA. Influence of yeast strain on biogenic amines content in wines: relationship with the utilization of amino acids during fermentation. Am J Enol Viticult. 2001;52(3):185–90.Google Scholar
  12. 12.
    Lonvaud-Funel A. Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiol Lett. 2001;199(1):9–13.CrossRefGoogle Scholar
  13. 13.
    Landete JM, Ferrer S, Pardo I. Which lactic acid bacteria are responsible for histamine production in wine? J Appl Microbiol. 2005;99(3):580–6.CrossRefGoogle Scholar
  14. 14.
    Hernández-Orte P, Lapeña AC, Peña-Gallego A, Astrain J, Baron C, Pardo I, et al. Biogenic amine determination in wine fermented in oak barrels: factors affecting formation. Food Res Int. 2008;41(7):697–706.CrossRefGoogle Scholar
  15. 15.
    Peña-Gallego A, Hernández-Orte P, Cacho J, Ferreira V. High-performance liquid chromatography analysis of amines in must and wine: a review. Food Rev Int. 2012;28(1):71–96.CrossRefGoogle Scholar
  16. 16.
    García-Villar N, Hernández-Cassou S, Saurina J. Determination of biogenic amines in wines by pre-column derivatization and high-performance liquid chromatography coupled to mass spectrometry. J Chromatogr A. 2009;1216(36):6387–93.CrossRefGoogle Scholar
  17. 17.
    Cunha SC, Faria MA, Fernandes JO. Gas chromatography–mass spectrometry assessment of amines in port wine and grape juice after fast chloroformate extraction/derivatization. J Agric Food Chem. 2011;59(16):8742–53.CrossRefGoogle Scholar
  18. 18.
    Daniel D, Santos V, Tadeu Rajh Vidal D, do Lago C. Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry. J Chromatogr A. 2015;1416.Google Scholar
  19. 19.
    Kivirand K, Rinken T. Biosensors for biogenic amines: the present state of art mini-review. Anal Lett. 2011;44(17):2821–33.CrossRefGoogle Scholar
  20. 20.
    Basozabal I, Guerreiro A, Gomez-Caballero A, Aranzazu Goicolea M, Barrio RJ. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements. Biosens Bioelectron. 2014;58:138–44.CrossRefGoogle Scholar
  21. 21.
    Henao-Escobar W, del Torno-de Román L, Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ. Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine. Food Chem. 2016;190:818–23.CrossRefGoogle Scholar
  22. 22.
    Marcobal A, Polo MC, Martín-Álvarez PJ, Moreno-Arribas MV. Biogenic amine content of red Spanish wines: comparison of a direct ELISA and an HPLC method for the determination of histamine in wines. Food Res Int. 2005;38(4):387–94.CrossRefGoogle Scholar
  23. 23.
    Hernández-Cassou S, Saurina J. Determination of histamine in wine samples by flow-injection analysis and multivariate calibration. Anal Lett. 2013;46(11):1758–68.CrossRefGoogle Scholar
  24. 24.
    Surya T, Sivaraman B, Alamelu V, Priyatharshini A, Arisekar U, Sundhar S. Rapid methods for histamine detection in fishery products. Int J Curr Microbiol Appl Sci. 2019;8.Google Scholar
  25. 25.
    Mak WC, Beni V, Turner APF. Lateral-flow technology: from visual to instrumental. TrAC-Trends Anal Chem. 2016;79:297–305.CrossRefGoogle Scholar
  26. 26.
    Wang D-B, Tian B, Zhang Z-P, Deng J-Y, Cui Z-Q, Yang R-F, et al. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system. Biosens Bioelectron. 2013;42:661–7.CrossRefGoogle Scholar
  27. 27.
    Wang D-B, Tian B, Zhang Z-P, Wang X-Y, Fleming J, Bi L-J, et al. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on “road closure”. Biosens Bioelectron. 2015;67:608–14.CrossRefGoogle Scholar
  28. 28.
    Wang Y, Xu H, Wei M, Gu H, Xu Q, Zhu W. Study of superparamagnetic nanoparticles as labels in the quantitative lateral flow immunoassay. Mater Sci Eng C Mater Biol Appl. 2009;29(3):714–8.CrossRefGoogle Scholar
  29. 29.
    Zheng C, Wang X, Lu Y, Liu Y. Rapid detection of fish major allergen parvalbumin using superparamagnetic nanoparticle-based lateral flow immunoassay. Food Control. 2012;26(2):446–52.CrossRefGoogle Scholar
  30. 30.
    Lago-Cachón D, Rivas M, Martínez-García JC, García JA. Cu impedance-based detection of superparamagnetic nanoparticles. Nanotechnology. 2013;24(24):245501.CrossRefGoogle Scholar
  31. 31.
    Rivas M, Lago-Cachón D, Martínez-García JC, García JA, Calleja AJ. Eddy-current sensing of superparamagnetic nanoparticles with spiral-like copper circuits. Sensors Actuators A Phys. 2014;216:123–7.CrossRefGoogle Scholar
  32. 32.
    Lago-Cachón D, Oliveira-Rodríguez M, Rivas M, Blanco-López MC, Martínez-García JC, Moyano A, et al. Scanning magneto-inductive sensor for quantitative assay of prostate-specific antigen. IEEE Magn Lett. 2017;8:1–5.CrossRefGoogle Scholar
  33. 33.
    Bica D, Vékás L, Avdeev MV, Marinică O, Socoliuc V, Bălăsoiu M, et al. Sterically stabilized water based magnetic fluids: synthesis, structure and properties. J Magn Magn Mater. 2007;311(1):17–21.CrossRefGoogle Scholar
  34. 34.
    Redruello B, Ladero V, del Rio B, Fernández M, Martín M, Alvarez M. A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer. Food Chem. 2016;217:117–24.CrossRefGoogle Scholar
  35. 35.
    Rodbard D. Statistical quality control and routine data processing for radioimmunoassays and immunoradiometric assays. Clin Chem. 1974;20(10):1255.Google Scholar
  36. 36.
    Aguilar-Arteaga K, Rodriguez JA, Barrado E. Magnetic solids in analytical chemistry: a review. Anal Chim Acta. 2010;674(2):157–65.CrossRefGoogle Scholar
  37. 37.
    Hayashi Y, Matsuda R, Maitani T, Imai K, Nishimura W, Ito K, et al. Precision, limit of detection and range of quantitation in competitive ELISA. Anal Chem. 2004;76(5):1295–301.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical and Analytical ChemistryUniversity of OviedoOviedoSpain
  2. 2.Department of PhysicsUniversity of OviedoGijónSpain
  3. 3.Institute of Structure of Matter (CNR)Monterotondo ScaloItaly
  4. 4.Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical ResearchRomanian Academy - Timisoara BranchTimisoaraRomania
  5. 5.Dairy Research Institute of Asturias, IPLA (CSIC)VillaviciosaSpain

Personalised recommendations