Analytical and Bioanalytical Chemistry

, Volume 411, Issue 24, pp 6449–6461 | Cite as

Zinc(II) salphen complex-based fluorescence optical sensor for biogenic amine detection

  • Muhammad Ameerullah Sahudin
  • Mohd Sukor Su’ait
  • Ling Ling Tan
  • Yook Heng Lee
  • Nurul Huda Abd KarimEmail author
Research Paper


Biogenic amines have attracted interest among researchers because of their importance as biomarkers in determining the quality of food freshness in the food industry. A rapid and simple technique that is able to detect biogenic amines is needed. In this work, a new optical sensing material for one of the biogenic amines, histamine, based on a new zinc(II) salphen complex was developed. The binding of zinc(II) complexes without an electron-withdrawing group (complex 1) and with electron-withdrawing groups (F, complex 2; Cl, complex 3) to histamine resulted in enhancement of fluorescence. All complexes exhibited high affinity for histamine [binding constant of (7.14 ± 0.80) × 104, (3.33 ± 0.03) × 105, and (2.35 ± 0.14) × 105 M-1, respectively]. Complex 2 was chosen as the sensing material for further development of an optical sensor for biogenic amines in the following step since it displayed enhanced optical properties in comparison with complexes 1 and 3. The optical sensor for biogenic amines used silica microparticles as the immobilisation support and histamine as the analyte. The optical sensor had a limit of detection for histamine of 4.4 × 10-12 M, with a linear working range between 1.0 × 10-11 and 1.0 × 10-6 M (R2 = 0.9844). The sensor showed good reproducibility, with a low relative standard deviation (5.5 %). In addition, the sensor exhibited good selectivity towards histamine and cadaverine over other amines, such as 1,2-phenylenediamine, triethylamine, and trimethylamine. Recovery and real sample studies suggested that complex 2 could be a promising biogenic amine optical sensing material that can be applied in the food industry, especially in controlling the safety of food for it to remain fresh and healthy for consumption.


Histamine Biogenic amines Zinc(II) salphen Optical sensor 



This work was supported by the Ministry of Higher Education Malaysia and Universiti Kebangsaan Malaysia through research grants FRGS/1/2016/STG01/UKM/02/1 and GUP-2017-067, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2019_2025_MOESM1_ESM.pdf (432 kb)
ESM 1 (PDF 431 KB)


  1. 1.
    Lehane L, Olley J. Histamine fish poisoning revisited. Int J Food Microbiol. 2000;58(1–2):1–37.CrossRefGoogle Scholar
  2. 2.
    Castillero P, Roales J, Lopes-Costa T, Sánchez-Valencia JR, Barranco A, González-Elipe AR, et al. Optical gas sensing of ammonia and amines based on protonated porphyrin/TiO2 composite thin films. Sensors. 2017;17(1):1–14.CrossRefGoogle Scholar
  3. 3.
    Pospiskova K, Safarik I, Sebela M, Kuncova G. Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer. Microchim Acta. 2013;180(3–4):311–8.CrossRefGoogle Scholar
  4. 4.
    Hasanah U, Setyowati M, Efendi R, Muslem M, Sani M, Diyana N, Safitri E, Yook Heng L, Idroes R. Preparation and characterization of a pectin membrane-based optical pH sensor for fish freshness monitoring. Biosensors. 2019;9(2):60. Google Scholar
  5. 5.
    Di Fusco M, Federico R, Boffi A, MacOne A, Favero G, Mazzei F. Characterization and application of a diamine oxidase from Lathyrus sativus as component of an electrochemical biosensor for the determination of biogenic amines in wine and beer. Anal Bioanal Chem. 2011;401(2):707–16.CrossRefGoogle Scholar
  6. 6.
    Karovicova J, Kohajdova Z. Biogenic amines in food. ChemInform. 2005;36(34).
  7. 7.
    Lapa-Guimarães J, Pickova J. New solvent systems for thin-layer chromatographic determination of nine biogenic amines in fish and squid. J Chromatogr A. 2004;1045(1–2):223–32.CrossRefGoogle Scholar
  8. 8.
    Steiner MS, Meier RJ, Spangler C, Duerkop A, Wolfbeis OS. Determination of biogenic amines by capillary electrophoresis using a chameleon type of fluorescent stain. Microchim Acta. 2009;167(3–4):259–66.CrossRefGoogle Scholar
  9. 9.
    Bergwerff AA, Van Knapen F. Surface plasmon resonance biosensors for detection of pathogenic microorganisms: strategies to secure food and environmental safety. J AOAC Int. 2006;89(3):826–31.PubMedGoogle Scholar
  10. 10.
    Fazial FF, Tan LL, Zubairi SI. Bienzymatic creatine biosensor based on reflectance measurement for real-time monitoring of fish freshness. Sensors Actuators, B Chem. 2018;269:36–45. Google Scholar
  11. 11.
    Chaicham A, Kongwutthivech J, Tuntulani T, Tomapatanaget B. Couple of histamine blue fluorescence chemosensor and surface charge selector of FC-modified silica nanoporous for highly specific histamine detection via FRET-process. Sensors Actuators B Chem. 2018;258:621–7.CrossRefGoogle Scholar
  12. 12.
    Wasoh H, Hengb LY, Bakar FA, Wagiran R, Salleh AB, Yusof NA, et al. A simple capacitive biosensor device for histamine measurement. Sens Rev. 2012;32(3):245–50.CrossRefGoogle Scholar
  13. 13.
    Pietrzyk A, Suriyanarayanan S, Kutner W, Chitta R, Souza FD. Using a recognition film of the molecularly imprinted polymer of bis(bithiophene) derivatives. Anal Chem. 2009;81(7):2633–43.CrossRefGoogle Scholar
  14. 14.
    Antoine FR, Wei CI, Littell RC, Quinn BP, Hogle ADMM. Free Amino acids in dark- and white-muscle fish as determined by. Food Chem Toxicol. 2001;66(1):72–7.Google Scholar
  15. 15.
    Guo QN, Li ZY, Chan WH, Lau KC, Crossley MJ. Appending zinc tetraphenylporphyrin with an amine receptor at β-pyrrolic carbon for designing a selective histamine chemosensor. Supramol Chem. 2010;22(2):122–9.CrossRefGoogle Scholar
  16. 16.
    Iordache AM, Cristescu R, Fagadar-Cosma E, Popescu AC, Ciucu AA, Iordache SM, et al. Histamine detection using functionalized porphyrin as electrochemical mediator. C R Chim. 2018;21(3–4):270–6.CrossRefGoogle Scholar
  17. 17.
    Reed JE, Arnal AA, Neidle S, Vilar R. Stabilization of G-quadruplex DNA and inhibition of telomerase activity by square-planar nickel(II) complexes. J Am Chem Soc. 2006;128(18):5992–3.CrossRefGoogle Scholar
  18. 18.
    Nabei A, Kuroda-Sowa T, Okubo T, Maekawa M, Munakata M. The effect of molecular packing on the occurrence of spin crossover phenomena in one-dimensional Fe(II)-bis-Schiff base complexes. Inorg Chim Acta. 2008;361(12–13):3489–93.CrossRefGoogle Scholar
  19. 19.
    Karim NHA, Mendoza O, Shivalingam A, Thompson AJ, Ghosh S, Kuimova MK, et al. Salphen metal complexes as tunable G-quadruplex binders and optical probes. RSC Adv. 2014;4(7):3355–63.CrossRefGoogle Scholar
  20. 20.
    Consiglio G, Failla S, Pietro OI, Purrello R, Di Bella S. Controlling the molecular aggregation. An amphiphilic Schiff-base zinc(II) complex as supramolecular fluorescent probe. Dalton Trans. 2009;(47):10426–8.Google Scholar
  21. 21.
    Chow CF, Kong HK, Leung SW, Chiu BKW, Koo CK, Lei ENY, et al. Heterobimetallic Ru(II)-Eu(III) complex as chemodosimeter for selective biogenic amine odorants detection in fish sample. Anal Chem. 2011;83(1):289–96.CrossRefGoogle Scholar
  22. 22.
    Shamsuddin R, Sahudin MA, Hassan NH, Karim NHA. Interaction of N,N’-bis[4-[1-(2-hydroxyethoxy)]salicylidene]-phenyldiamine-nickel(II) and copper(II) complexes with G-quadruplex DNA. Malays J Anal Sci. 2017;21(3):544–51.Google Scholar
  23. 23.
    Jiang N, Li SY, Xie SS, Li ZR, Wang KDG, Wang XB, et al. Design, synthesis and evaluation of multifunctional salphen derivatives for the treatment of Alzheimer’s disease. Eur J Med Chem. 2014;87:540–51.CrossRefGoogle Scholar
  24. 24.
    Bogush GH, Tracy MA, Zukoski CF IV. Preparation of monodisperse silica particles: control of size and mass fraction. J Non-Cryst Solids. 1988;104(1):95–106.CrossRefGoogle Scholar
  25. 25.
    Bueno-Solano C, López-Cervantes J, Sánchez-Machado DI, Campas-Baypoli ON. HPLC determination of histamine, tyramine and amino acids in shrimp by-products. J Braz Chem Soc. 2012;23(1):96–102.CrossRefGoogle Scholar
  26. 26.
    Karakaplan M, Demetgül C, Serin S. Synthesis and thermal properties of a novel Schiff base oligomer with a double azomethine group and its Co(II) and Mn(II) complexes. J Macromol Sci A. 2008;45(5):406–14.CrossRefGoogle Scholar
  27. 27.
    Mazlan NF, Tan LL, Karim NHA, Heng LY, Reza MIH. Optical biosensing using newly synthesized metal salphen complexes: a potential DNA diagnostic tool. Sensors Actuators B Chem. 2017;242:176–88.CrossRefGoogle Scholar
  28. 28.
    Sukri SAM, Heng LY, Karim NHA. Synthesis, characterization and DNA-binding studies of hydroxyl functionalized platinum(II) salphen complexes. J Fluoresc. 2017;27(3):1009–23.CrossRefGoogle Scholar
  29. 29.
    Pinto SMA, Lourenço MAO, Calvete MJF, Abreu AR, Rosado MTS, Burrows HD, et al. Synthesis of new metalloporphyrin triads: efficient and versatile tripod optical sensor for the detection of amines. Inorg Chem. 2011;50(17):7916–8.CrossRefGoogle Scholar
  30. 30.
    Lee B, Scopelliti R, Severin K. A molecular probe for the optical detection of biogenic amines. Chem Commun. 2011;47(34):9639–41.CrossRefGoogle Scholar
  31. 31.
    Campbell NH, Karim NHA, Parkinson GN, Gunaratnam M, Petrucci V, Todd AK, et al. Molecular basis of structure–activity relationships between salphen metal complexes and human telomeric DNA quadruplexes. J Med Chem. 2012;55(1):209–22.CrossRefGoogle Scholar
  32. 32.
    Hu Y, Ma X, Zhang Y, Che Y, Zhao J. Detection of amines with fluorescent nanotubes: applications in the assessment of meat spoilage. ACS Sens. 2016;1(1):22–5.CrossRefGoogle Scholar
  33. 33.
    Ng SM, Koneswaran M, Narayanaswamy R. A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv. 2016;6:21624–61.CrossRefGoogle Scholar
  34. 34.
    Yan J, Springsteen G, Deeter S, Wang B. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—it is not as simple as it appears. Tetrahedron. 2004;60(49):11205–9.CrossRefGoogle Scholar
  35. 35.
    Gao L, Wang Y, Wang J, Huang L, Shi L, et al. A novel ZnII-sensitive fluorescent chemosensor assembled within aminopropyl-functionalized mesoporous SBA-15. Inorg Chem. 2006;45(17):6844–50.CrossRefGoogle Scholar
  36. 36.
    Nakamura M, Sanji T, Tanaka M. Fluorometric sensing of biogenic amines with aggregation-induced emission-active tetraphenylethenes. Chem Eur J. 2011;17(19):5344–9.CrossRefGoogle Scholar
  37. 37.
    English JT, Deore BA, Freund MS. Biogenic amine vapour detection using poly(anilineboronic acid) films. Sensors Actuators B Chem. 2006;115(2):666–71.CrossRefGoogle Scholar
  38. 38.
    Wang QH, Fang GZ, Liu YY, Zhang DD, Liu JM, Wang S. Fluorescent sensing probe for the sensitive detection of histamine based on molecular imprinting ionic liquid-modified quantum dots. Food Anal Methods. 2017;10(7):2585–92.CrossRefGoogle Scholar
  39. 39.
    Pérez S, Bartrolí J, Fàbregas E. Amperometric biosensor for the determination of histamine in fish samples. Food Chem. 2013;141(4):4066–72.CrossRefGoogle Scholar
  40. 40.
    Usman H, Bakar MHA, Hamzah AS, Salleh AB. A tapered fibre optics biosensor for histamine detection. Sens Rev. 2016;36(1):40–7.CrossRefGoogle Scholar
  41. 41.
    Harris DC. Quantitative chemical analysis. 7th ed. New York: Freeman; 2007.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Muhammad Ameerullah Sahudin
    • 1
  • Mohd Sukor Su’ait
    • 2
  • Ling Ling Tan
    • 3
  • Yook Heng Lee
    • 1
    • 3
  • Nurul Huda Abd Karim
    • 1
    Email author
  1. 1.Centre for Advanced Materials and Renewable Resources (CAMARR), Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Solar Energy Research InstituteUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Southeast Asia Disaster Prevention Research Initiative, Institute for Environment and DevelopmentUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations