Development of a new fluorescent probe for cysteine detection in processed food samples

  • Sujoy Das
  • Ayndrila Ghosh
  • Shampa Kundu
  • Shrabani Saha
  • Himadri Sekhar Sarkar
  • Prithidipa SahooEmail author
Research Paper


Cysteine is a crucial amino acid, found in a huge amount in protein-rich foods. We focused our research to determine the amount of free cysteine consumed highly in foods such as pork, beef, poultry, eggs, dairy, red peppers, soybeans, broccoli, brussels sprouts, oats, and wheat germs. A newly designed carbazole-pyridine-based fluorescent probe (CPI) has been introduced for quantitative estimation of cysteine (Cys) with a “turn on” fluorescence in some popular processed food samples chosen from our daily diet. CPI shows both naked eye and UV-visible color changes upon interaction with cysteine. The binding approach between CPI and Cys at biological pH has been thoroughly explored by UV-visible and fluorescence spectroscopy. From Job’s plot analysis, 1:1 stoichiometric reaction between CPI and Cys is observed with a detection limit of 3.8 μM. NMR, ESI mass spectrometry, and time-dependent density functional theory (TD-DFT) study enlightens the formation of more stable product CPI-Cys. The “turn on” response of the probe CPI occurs due to the interruption of intra-molecular charge transfer (ICT) process upon reacting with cysteine. Moreover, CPI is a very stable, cost-effective compound and exhibits excellent real-time selectivity towards Cys over all other comparative biorelevant analytes. Interestingly, our proposed method is much advantageous as it is able to estimate cysteine predominantly by screening out other comparative biocomponents found in different protein-rich foods.


Cysteine Processed foods Fluorescent chemosensor Detection and quantification DFT 



Prithidipa Sahoo acknowledges SERB-DST [Project file no. SB/FT/CS-021/2014], Govt. of India, for awarding her the young scientist grant. Sujoy Das thanks CSIR, India, for research fellowship. We all thank Mr. Kollol Mukherjee, School of Chemistry, University of Hyderabad, India, for his help for doing HRMS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

216_2019_2012_MOESM1_ESM.pdf (1.8 mb)
ESM 1 (PDF 1816 kb)


  1. 1.
    Brosnan JT, Brosnan ME. The sulfur-containing amino acids: an overview. J Nutr. 2006;136:1636S–40S.Google Scholar
  2. 2.
    Wang N, Majmudar CY, Pomerantz WC, Gagnon JK, Sadowsky JD, Meagher JL, et al. Ordering a dynamic protein via a small-molecule stabilizer. J Am Chem Soc. 2013;135:3363–6.CrossRefGoogle Scholar
  3. 3.
    Berg JM, Tymoczko JL, Stryer L. Biochemistry. 7th ed. New York: W.H. Freeman Company; 2012.Google Scholar
  4. 4.
    Yue Y, Yue Y, Huo F, Ning P, Zhang Y, Chao J, et al. Dual-site fluorescent probe for visualizing the metabolism of Cys in living cells. J Am Chem Soc. 2017;139:3181–5.CrossRefGoogle Scholar
  5. 5.
    Chen X, Zhou Y, Peng X, Yoon J. Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev. 2010;39:2120–35.CrossRefGoogle Scholar
  6. 6.
    Yang Y, Zhao Q, Feng W, Li F. Luminescent chemodosimeters for bioimaging. Chem Rev. 2013;113:192–270.CrossRefGoogle Scholar
  7. 7.
    Zhou Y, Yoon J. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem Soc Rev. 2012;41:52–67.CrossRefGoogle Scholar
  8. 8.
    Wood ZA, Schröder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003;28:32–40.CrossRefGoogle Scholar
  9. 9.
    Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol. 1999;39:67–101.CrossRefGoogle Scholar
  10. 10.
    Mathews CK, van Holde KE, Ahern KG. Biochemistry. San Francisco, CA: Addison-Wesley Publishing Company; 2000.Google Scholar
  11. 11.
    Fischer HM, Bruderer T, Hennecke H. Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding. Nucleic Acids Res. 1988;16:2207–24.CrossRefGoogle Scholar
  12. 12.
    Long L, Zhou L, Wang L, Meng S, Gong A, Du F, et al. A coumarin-based fluorescent probe for biological thiols and its application for living cell imaging. Org Biomol Chem. 2013;11:8214–20.CrossRefGoogle Scholar
  13. 13.
    Kim Y, Mulay VS, Choi M, Yu BS, Jon S, Churchill DG. Exceptional time response, stability and selectivity in doubly-activated phenyl selenium-based glutathione-selective platform. Chem Sci. 2015;6:5435–9.CrossRefGoogle Scholar
  14. 14.
    Zhang X, Ren X, Xu QH, Loh KP, Chen ZK. One- and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift. Org Lett. 2009;11:1257–60.CrossRefGoogle Scholar
  15. 15.
    Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature. 2010;468:790–5.CrossRefGoogle Scholar
  16. 16.
    Nagy P, Ashby MT. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J Am Chem Soc. 2007;129:14082–91.CrossRefGoogle Scholar
  17. 17.
    Reddie KG, Carroll KS. Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol. 2008;12:746–54.CrossRefGoogle Scholar
  18. 18.
    Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57:145–55.CrossRefGoogle Scholar
  19. 19.
    López-Sánchez LM, López-Pedrera C, Rodríguez-Ariza A. Proteomic approaches to evaluate protein S-nitrosylation in disease. Mass Spectrom Rev. 2014;33:7–20.CrossRefGoogle Scholar
  20. 20.
    Oja SS, Janáky R, Varga V, Saransaari P. Modulation of glutamate receptor functions by glutathione. Neurochem Int. 2000;37:299–306.CrossRefGoogle Scholar
  21. 21.
    Shahrokhian S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem. 2001;73:5972–8.CrossRefGoogle Scholar
  22. 22.
    Cook JA, Pass HI, Lype SN, Friedman N, DeGraff W, Russo A, et al. Cellular glutathione and thiol measurements from surgically resected human lung tumor and normal lung tissue. Cancer Res. 1991;51:4287–94.Google Scholar
  23. 23.
    Schnelldorfer T, Schnelldorfer T, Gansauge S, Gansauge F, Schlosser S, Beger HG, et al. Glutathione depletion causes cell growth inhibition and enhanced apoptosis in pancreatic cancer cells. Cancer. 2000;1:1440–7.CrossRefGoogle Scholar
  24. 24.
    Franco R, Cidlowski JA. Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ. 2009;16:1303–14.CrossRefGoogle Scholar
  25. 25.
    Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.CrossRefGoogle Scholar
  26. 26.
    Wang XF, Cynader MS. Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity. J Neurosci. 2001;21:3322–31.CrossRefGoogle Scholar
  27. 27.
    Liu J, Sun YQ, Huo Y, Zhang H, Wang L, Zhang P, et al. Simultaneous fluorescence sensing of Cys and GSH from different emission channels. J Am Chem Soc. 2014;136:574–7.CrossRefGoogle Scholar
  28. 28.
    Hao W, Arran M, McBride S, Gao JP, Wang ZY. Colorimetric and near-infrared fluorescence turn-on molecular probe for direct and highly selective detection of cysteine in human plasma. J Mater Chem. 2011;21:1040–8.CrossRefGoogle Scholar
  29. 29.
    Wang YW, Liu SB, Ling WJ, Peng Y. A fluorescent probe for relay recognition of homocysteine and group IIIA ions including Ga(III). Chem Commun. 2016;52:827–30.CrossRefGoogle Scholar
  30. 30.
    Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W. Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res. 2016;13:952–63.CrossRefGoogle Scholar
  31. 31.
    Jacobsen DW. Homocysteine and vitamins in cardiovascular disease. Clin Chem. 1998;44:1833–43.Google Scholar
  32. 32.
    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346:476–83.CrossRefGoogle Scholar
  33. 33.
    Demirkol O, Adams C, Ercal N. Biologically important thiols in various vegetables and fruits. J Agric Food Chem. 2004;52:8151–4.CrossRefGoogle Scholar
  34. 34.
    Pieniązek D, Grabarek Z, Rakowska M. Quantitative determination of the content of available methionine and cysteine in food proteins. Nutr Metabol. 1975;18:16–22.CrossRefGoogle Scholar
  35. 35.
    Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 27, May 2015.Google Scholar
  36. 36.
    Hussain B, Sultana T, Sultana S, Mahboob S, Farooq M, Al-Ghanim K, et al. First report on fish cysteine as a biomarker of contamination in the River Chenab, Pakistan. Environ Sci Pollut Res.
  37. 37.
    Oldiges M, Eikmanns BJ, Blombach B. Application of metabolic engineering for the biotechnological production of L-valine. Appl Microbiol Biotechnol. 2014;98:5859–70.CrossRefGoogle Scholar
  38. 38.
    Wada M, Takagi H. Metabolic pathways and biotechnological production of L-cysteine. Appl Microbiol Biotechnol. 2006;73:48–54.CrossRefGoogle Scholar
  39. 39.
    Li X, Wang C, Lu F, Zhang L, Yang Q, Mu J, et al. Physicochemical properties of corn starch isolated by acid liquid and l-cysteine. Food Hydrocoll. 2015;44:353–9.CrossRefGoogle Scholar
  40. 40.
    Roland A, Schneider R, Razungles A, Cavelier F. Varietal thiols in wine: discovery, analysis and applications. Chem Rev. 2011;111:7355–76.CrossRefGoogle Scholar
  41. 41.
    Starkenmann C, Niclass Y. New cysteine-S-conjugate precursors of volatile sulfur compounds in bell peppers (Capsicum annuum L. cultivar). J Agric Food Chem. 2011;59:3358–65.CrossRefGoogle Scholar
  42. 42.
    Majzoobi M, Farahnaky A, Jamalian J, Radi M. Effects of L-cysteine on some characteristics of wheat starch. Food Chem. 2011;124:795–800.CrossRefGoogle Scholar
  43. 43.
    Skalski C, Sistrunk WA. Factors influencing color degradation in Concord grape juice. J Food Sci. 1973;38:1060.CrossRefGoogle Scholar
  44. 44.
    Gilsenan MB, Lambe J, Gibney MJ. Irish National Food Ingredient Database: application for assessing patterns of additive usage in foods. Food Addit Contam. 2002;19:1105–15.CrossRefGoogle Scholar
  45. 45.
    Hopkins SM, Gibney MJ, Nugent AP, McNulty H, Molloy AM, Scott JM, et al. Impact of voluntary fortification and supplement use on dietary intakes and biomarker status of folate and vitamin B-12 in Irish adults. Am J Clin Nutr. 2015;101:1163–72.CrossRefGoogle Scholar
  46. 46.
    Le Donne C, Piccinelli R, Sette S, Leclercq C. Overview of existing European food consumption databases: critical aspects in relation to their use for the assessment of dietary exposure to additives, flavourings and residues of food contact materials. Int J Food Sci Nutr. 2011;62:121–32.CrossRefGoogle Scholar
  47. 47.
    EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2013. Scientific Opinion on the safety and efficacy of L-cysteine hydrochloride monohydrate as a flavouring additive for pets. EFSA J. 2013;13:3437.Google Scholar
  48. 48.
    Starkenmann C, Troccaz M, Howell K. The role of cysteine and cysteine-S conjugates as odour precursors in the flavour and fragrance industry. Flavour Fragra J. 2008;23:369–81.CrossRefGoogle Scholar
  49. 49.
    Jung HS, Pradhan T, Han JH, Heo KJ, Lee JH, Kang C, et al. Molecular modulated cysteine-selective fluorescent probe. Biomaterials. 2012;33:8495–502.CrossRefGoogle Scholar
  50. 50.
    Liu J, Sun YQ, Zhang H, Huo Y, Shi Y, Guo W. Simultaneous fluorescent imaging of Cys/Hcy and GSH from different emission channels. Chem Sci. 2014;5:3183–8.CrossRefGoogle Scholar
  51. 51.
    Jung HS, Chen X, Kim JS, Yoon J. Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev. 2013;42:6019–31.CrossRefGoogle Scholar
  52. 52.
    Ji S, Huimin G, Yuan X, Li X, Ding H, Gao P, et al. A highly selective OFF-ON red-emitting phosphorescent thiol probe with large stokes shift and long luminescent lifetime. Org Lett. 2010;12:2876–9.CrossRefGoogle Scholar
  53. 53.
    Niu LY, Chen YZ, Zheng HR, Wu LZ, Tung CH, Yang QZ. Design strategies of fluorescent probes for selective detection among biothiols. Chem Soc Rev. 2015;44:6143–60.CrossRefGoogle Scholar
  54. 54.
    Das S, Mukherjee U, Pal S, Maitra S, Sahoo P. Selective sensing of Al3+ ion by nitrophenyl induced coordination: imaging in zebrafish brain tissue. Org Biomol Chem. 2019;17:5230–3.CrossRefGoogle Scholar
  55. 55.
    Lee D, Kim G, Yin J, Yoon J. An aryl-thioether substituted nitrobenzothiadiazole probe for the selective detection of cysteine and homocysteine. Chem Commun. 2015;51:6518–20.CrossRefGoogle Scholar
  56. 56.
    Yang XF, Huang Q, Zhong Y, Li Z, Li H, Lowry M, et al. A dual emission fluorescent probe enables simultaneous detection of glutathione and cysteine/homocysteine. Chem Sci. 2014;5:2177–83.CrossRefGoogle Scholar
  57. 57.
    Zhang H, Zhang C, Liu R, Yi L, Sun H. A highly selective and sensitive fluorescent thiol probe through dual-reactive and dual-quenching groups. Chem Commun. 2015;51:2029–32.CrossRefGoogle Scholar
  58. 58.
    Du F, Li M, Wei Y, Huang D, Zhou Y, Yang L, et al. A water-soluble fluorescent probe for detecting creatinine in totally aqueous media and imaging exogenous creatinine in living cells. Anal Bioanal Chem. 2019;411:2545–53.CrossRefGoogle Scholar
  59. 59.
    Zhang J, Wang J, Liu J, Ning L, Zhu X, Yu B, et al. Near-infrared and naked-eye fluorescence probe for direct and highly selective detection of cysteine and its application in living cells. Anal Chem. 2015;87:4856–63.CrossRefGoogle Scholar
  60. 60.
    Zeng RJ, Gao Q, Cheng FM, Yang YS, Zhang PS, Chen S, et al. A near-infrared fluorescent sensor with large stokes shift for rapid and highly selective detection of thiophenols in water samples and living cells. Anal Bioanal Chem. 2018;410:2001–9.CrossRefGoogle Scholar
  61. 61.
    Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Applications of supramolecular anion recognition. Chem Rev. 2015;115:8038–155.CrossRefGoogle Scholar
  62. 62.
    Das S, Rissanen K, Sahoo P. Rare crystal structure of open spirolactam ring along with the closed ring form of a rhodamine derivative: sensing of Cu2+ ions from spinach. ACS Omega. 2019;4:5270–4.CrossRefGoogle Scholar
  63. 63.
    Liu J, Sun YQ, Huo Y, Zhang H, Wang L, Zhang P, et al. Simultaneous fluorescence sensing of Cys and GSH from different emission channels. J Am Chem Soc. 2013;136:574–7.CrossRefGoogle Scholar
  64. 64.
    Guo Z, Nam S, Park S, Yoon J. A highly selective ratiometric near-infrared fluorescent cyanine sensor for cysteine with remarkable shift and its application in bioimaging. Chem Sci. 2012;3:2760–5.CrossRefGoogle Scholar
  65. 65.
    Grüter A, Hoffmann M, Müller R, Wohland T, Jung G. A high-affinity fluorescence probe for copper(II) ions and its application in fluorescence lifetime correlation spectroscopy. Anal Bioanal Chem. 2019.
  66. 66.
    Lin VS, Chen W, Xian M, Chang CJ. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev. 2015;44:4596–618.CrossRefGoogle Scholar
  67. 67.
    Liu K, Xu S, Guo P, Liu L, Shi X, Zhu B. A novel fluoro-chromogenic Cu2+ probe for living-cell imaging based on rhodamine 6G-pyridine conjugation. Anal Bioanal Chem. 2019.
  68. 68.
    Chen F, Han D, Gao Y, Liu H, Wang S, Zhou F, et al. A turn-on fluorescent probe for simultaneous sensing of cysteine/homocysteine and hydrogen sulfide and its bioimaging applications. Talanta. 2018;187:19–26.CrossRefGoogle Scholar
  69. 69.
    Zhang H, Feng W, Feng G. A simple and readily available fluorescent turn-on probe for cysteine detection and bioimaging in living cells. Dyes Pigments. 2017;139:73–8.CrossRefGoogle Scholar
  70. 70.
    Zhang H, Qin N, Zhijie F. A novel dicyanoisophorone-based ratiometric fluorescent probe for selective detection of cysteine and its bioimaging application in living cells. Molecules. 2018;23:475.CrossRefGoogle Scholar
  71. 71.
    Yang Z, Zhao N, Sun Y, Miao F, Liu Y, Liu X, et al. Highly selective red- and green-emitting two-photonfluorescent probes for cysteine detection and their bio-imaging in living cells. Chem Commun. 2012;48:3442–4.CrossRefGoogle Scholar
  72. 72.
    Liu B, Wang J, Zhang G, Bai R, Pang Y. Flavone-based ESIPT ratiometric chemodosimeter for detection of cysteine in living cells. ACS Appl Mater Interfaces. 2014;6:4402–7.CrossRefGoogle Scholar
  73. 73.
    Wang Y, Zhu M, Jiang E, Hua R, Na R, Li QX. A simple and rapid turn on ESIPT fluorescent probe for colorimetric and ratiometric detection of biothiols in living cells. Sci Rep. 2017;7:4377. Scholar
  74. 74.
    Yin GX, Niu TT, Gan YB, Yu T, Yin P, Chen HM, et al. A multi-signal fluorescent probe with multiple binding sites for simultaneous sensing of cysteine, homocysteine, and glutathione. Angew Chem Int Ed. 2018;57:4991–4.CrossRefGoogle Scholar
  75. 75.
    Yang YS, Yuan ZH, Zhang XP, Xu JF, Lv PC, Zhu HL. A selective fluorescent sensor for cysteine detection with potential as a white light emitting fluorophore in living cell imaging. J Mater Chem B. 2019.
  76. 76.
    Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19:217–46.CrossRefGoogle Scholar
  77. 77.
    Homocysteine, Interactive Concepts in Biochemistry, Wiley cutting edge, Section 19.2.Google Scholar
  78. 78.
    Lu SC. Glutathione synthesis. Biochim Biophys Acta. 1830;2013:3143–53.Google Scholar
  79. 79.
    Lu J, Sun C, Chen W, Ma H, Shi W, Li X. Determination of non-protein cysteine in human serum by a designed BODIPY-based fluorescent probe. Talanta. 2011;83:1050–6.CrossRefGoogle Scholar
  80. 80.
    Liu Y, Lv X, Hou M, Shi Y, Guo W. Selective fluorescence detection of cysteine over homocysteine and glutathione based on a cysteine-triggered dual Michael addition/retro-aza-aldol cascade reaction. Anal Chem. 2015;87:11475–83.CrossRefGoogle Scholar
  81. 81.
    Yang X, Guo Y, Strongin RM. Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew Chem Int Ed. 2011;50:10690–3.CrossRefGoogle Scholar
  82. 82.
    Benesi H, Hildebrand J. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc. 1949;71:2703–7.CrossRefGoogle Scholar
  83. 83.
    Fielding L. Determination of association constants (Ka) from solution NMR data. Tetrahedron. 2000;56:6151–70.CrossRefGoogle Scholar
  84. 84.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Gaussian, Inc., Wallingford CT 2009; Revision A. 02.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sujoy Das
    • 1
  • Ayndrila Ghosh
    • 1
  • Shampa Kundu
    • 1
  • Shrabani Saha
    • 1
  • Himadri Sekhar Sarkar
    • 2
  • Prithidipa Sahoo
    • 1
    Email author
  1. 1.Department of ChemistryVisva-Bharati UniversitySantiniketanIndia
  2. 2.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations