Rapid detection of trace Salmonella in milk and chicken by immunomagnetic separation in combination with a chemiluminescence microparticle immunoassay

  • Jingwen Li
  • Qingjun Liu
  • Yuping Wan
  • Xiaosheng Wu
  • Yin Yang
  • Ruixue Zhao
  • Erning Chen
  • Xiaoyan Cheng
  • Meihong DuEmail author
Research Paper


Rapid detection of trace Salmonella is urgently needed to ensure food safety. We present an innovative pretreatment strategy, based on a two-step enrichment culture and immunomagnetic separation, combined with a chemiluminescence microparticle immunoassay to detect at least one proliferative Salmonella cell in 25 mL (25 g) food. The capture performance of immunomagnetic beads (IMBs) of sizes for Salmonella was investigated, and the IMBs of size 2.8 μm showed a high capture efficiency of 60.7% in 25 mL milk and 74.5% in 25 mL chicken culture filtrate, which ensured the successful capture of trace Salmonella after 2.5 h in situ enrichment even from only one Salmonella cell. The separated Salmonella cells, reaching an amount of 103 colony-forming units (CFU) by a secondary enrichment for 3 h, were detected by a horseradish peroxidase chemiluminescence reaction with 4-(1-imidazolyl)phenol as an enhancer, which evidenced a linear response for Salmonella concentrations ranging from 2.3 × 102 to 7.8 × 104 CFU/mL. The entire detection process was completed within 8 h, with a very low detection limit of 1 CFU/25 mL (25 g), which was verified by colony counting, and a small degree of interference of 0.17–1.06%. Trace Salmonella from five different serovars in milk and chicken was successfully detected without false negative or false positive results. Furthermore, this study provides a basis to develop a fully automated instrument based on IMBs that includes all steps from sample preparation to chemiluminescence microparticle immunoassay for high-throughput screening of foodborne pathogens.

Graphical abstract


Pretreatment Pathogen Chemiluminescence immunoassay Enrichment Food safety 



This work was supported by the National Key Scientific Instrument and Equipment Development Projects (grant number 2013YQ140371) and the Building of Innovative Team Plan (grant number IG201807C1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2019_1991_MOESM1_ESM.pdf (172 kb)
ESM 1 (PDF 172 kb)


  1. 1.
    Silva NFD, Freire C, Delerue-Matos C. Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment. Biosens Bioelectron. 2018;99:667–82.CrossRefGoogle Scholar
  2. 2.
    Herzig GPD, Aydin M, Dunigan S, Shah P, Jeong KC, Si HP, et al. Magnetic bead-based immunoassay coupled with tyramide signal amplification for detection of Salmonella in foods. J Food Saf. 2016;36:1395–401.CrossRefGoogle Scholar
  3. 3.
    Wang Y, Salazar JK. Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr Rev Food Sci Food Saf. 2016;15:183–205.CrossRefGoogle Scholar
  4. 4.
    Mooijman KA, Pielaat A, Afa K. Validation of EN ISO 6579-1 - microbiology of the food chain-Horizontal method for the detection, enumeration and serotyping of Salmonella - part 1 detection of Salmonella spp. Int J Food Microbiol. 2018;288:3–12.CrossRefGoogle Scholar
  5. 5.
    Park S, Min J, Kim Y. Chemiluminescent enzyme-linked immunosorbent assay on a strip to detect Escherichia coli O157:H7. Int J Environ Anal Chem. 2012;92:655–64.CrossRefGoogle Scholar
  6. 6.
    Li Z, Yang H, Sun L, Qi H, Gao Q, Zhang C. Electrogenerated chemiluminescence biosensors for the detection of pathogenic bacteria using antimicrobial peptides as capture/signal probes. Sensors Actuators B Chem. 2015;210:468–74.CrossRefGoogle Scholar
  7. 7.
    Liu X, Hu Y, Zheng S, Liu Y, He Z, Luo F. Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticles-enriched Salmonella enteritidis. Sensors Actuators B Chem. 2016;230:191–8.CrossRefGoogle Scholar
  8. 8.
    Afonso AS, PerezLopez B, Faria RC, Mattoso LHC, Hernandez-Herrero M, RoigSagues AX, et al. Electrochemical detection of Salmonella using gold nanoparticles. Biosens Bioelectron. 2013;40:121–6.CrossRefGoogle Scholar
  9. 9.
    Brandão D, Liébana S, Pividori MI. Multiplexed detection of foodborne pathogens based on magnetic particles. New Biotechnol. 2015;32(5):511–20.CrossRefGoogle Scholar
  10. 10.
    Yang S, Ouyang H, Su X, Gao H, Kong W, Wang M, et al. Dual-recognition detection of Staphylococcus aureus using vancomycin-functionalized magnetic beads as concentration carriers. Biosens Bioelectron. 2016;78:174–80.CrossRefGoogle Scholar
  11. 11.
    Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus. Biosens Bioelectron. 2015;68:149–55.CrossRefGoogle Scholar
  12. 12.
    Yue H, Yong H, Fan E, Lin W, Lu S, Fu Z. Label-free electrochemiluminescent biosensor for rapid and sensitive detection of Pseudomonas aeruginosa using phage as highly specific recognition agent. Biosens Bioelectron. 2017;94:429–32.CrossRefGoogle Scholar
  13. 13.
    Roda A, Guardigli M. Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem. 2012;402:69–76.CrossRefGoogle Scholar
  14. 14.
    Vdovenko MM, Papper V, Marks RS, Sakharov IY. Chemiluminescent assay of phenol in waste water using HRP-catalysed luminol oxidation with and without enhancers. Anal Methods. 2014;6:8654–9.CrossRefGoogle Scholar
  15. 15.
    Yu F, Yu S, Yu L, Li Y, Wu Y, Zhang H, et al. Determination of residual enrofloxacin in food samples by a sensitive method of chemiluminescence enzyme immunoassay. Food Chem. 2014;149:71–5.CrossRefGoogle Scholar
  16. 16.
    Dotsikas Y, Loukas YL. Employment of 4-(1-imidazolyl)phenol as a luminol signal enhancer in a competitive-type chemiluminescence immunoassay and its comparison with the conventional antigen–horseradish peroxidase conjugate-based assay. Anal Chim Acta. 2004;509:103–9.CrossRefGoogle Scholar
  17. 17.
    Yusakul G, Udomsin O, Tanaka H, Morimoto S, Juengwatanatrakul T, Putalun W. Enzyme-linked immunosorbent assay by enhanced chemiluminescence detection for the standardization of estrogenic miroestrol in Pueraria candollei Graham ex Benth. Luminescence. 2015;30:568–75.CrossRefGoogle Scholar
  18. 18.
    Parisi D, Magliulo M, Nanni P, Casale M, Forina M, Roda A. Analysis and classification of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and a chemometric approach. Anal Bioanal Chem. 2008;391:2127–34.CrossRefGoogle Scholar
  19. 19.
    Kijek TM, Rossi CA, Moss D, Parker RW, Henchal EA. Rapid and sensitive immunomagnetic-electrochemiluminescent detection of staphylococcal enterotoxin B. J Immunol Methods. 2000;236:9–17.CrossRefGoogle Scholar
  20. 20.
    Sato K, Yamanaka M, Hagino T, Tokeshi M, Kimura H, Kitamori T. Microchip-based enzyme-linked immunosorbent assay (microELISA) system with thermal lens detection. Lab Chip. 2004;4:570–5.CrossRefGoogle Scholar
  21. 21.
    Yu S, Yu F, Li Y, Liu L, Zhang H, Qu L, et al. Magnetic nanoparticles replacing microplate as immobile phase could greatly improve the sensitivity of chemiluminescence enzymatic immunoassay for deoxynivalenol. Food Control. 2016;60:500–4.CrossRefGoogle Scholar
  22. 22.
    Liu Y, Ye J, Li Y. Rapid detection of Escherichia coli O157:H7 inoculated in ground beef, chicken carcass, and lettuce samples with an immunomagnetic chemiluminescence fiber-optic biosensor. J Food Prot. 2003;66:512–7.CrossRefGoogle Scholar
  23. 23.
    Lim MC, Park JY, Park K, Ok G, Jang HJ, Choi SW. An automated system for separation and concentration of food-borne pathogens using immunomagnetic separation. Food Control. 2017;73:1541–7.CrossRefGoogle Scholar
  24. 24.
    Dorst BV, Mehta J, Bekaert K, Rouah-Martin E, Coen WD, Dubruel P, et al. Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron. 2011;26:1178–94.CrossRefGoogle Scholar
  25. 25.
    Lin J, Ju H. Electrochemical and chemiluminescent immunosensors for tumor markers. Biosens Bioelectron. 2005;20:1461–70.CrossRefGoogle Scholar
  26. 26.
    Gracias KS, Mckillip JL. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can J Microbiol. 2004;50:883–90.CrossRefGoogle Scholar
  27. 27.
    International Organization for Standardization. EN ISO 16654:2001. Microbiology of food and animal feeding stuffs—horizontal method for the detection of Escherichia coli O157.Google Scholar
  28. 28.
    International Organization for Standardization. ISO 15553:2006. Isolation and identification of Cryptosporidium oocysts and Giardia cysts in waters.Google Scholar
  29. 29.
    Olsvik O, Popovic T, Skjerve E, Cudjoe KS, Hornes E, Ugelstad J, et al. Magnetic separation techniques in diagnostic microbiology. Microbiol Rev. 1994;7:43–54.CrossRefGoogle Scholar
  30. 30.
    US Environmental Protection Agency. Method 1623: Cryptosporidium and Giardia in water by filtration/IMS/FA. Office of Water EPA-821-R-99–006. Cincinnati: US Environmental Protection Agency; 1999.Google Scholar
  31. 31.
    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. SNT 0184.3-2008 determination of Listeria monocytogenes in food for import and export, Beijing; 2008.Google Scholar
  32. 32.
    Hyeon JY, Deng X. Rapid detection of Salmonella in raw chicken breast using real-time PCR combined with immunomagnetic separation and whole genome amplification. Food Microbiol. 2017;63:111–6.CrossRefGoogle Scholar
  33. 33.
    Wang Z, Duan N, Li J, Ye J, Ma S, Le G. Ultrasensitive chemiluminescent immunoassay of Salmonella with silver enhancement of nanogold labels. Luminescence. 2011;26:136–41.CrossRefGoogle Scholar
  34. 34.
    Zheng Q, Mikš-Krajnik M, Yang Y, Xu W, Yuk HG. Evaluation of real-time PCR coupled with immunomagnetic separation or centrifugation for the detection of healthy and sanitizer-injured Salmonella spp. on mung bean sprouts. Int J Food Microbiol. 2014;186:6–13.CrossRefGoogle Scholar
  35. 35.
    Mao Y, Huang X, Xiong S, Xu H, Aguilar ZP, Xiong Y. Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes, and Listeria ivanovii, in lettuce. Food Control. 2016;59:601–8.CrossRefGoogle Scholar
  36. 36.
    Wutz K, Niessner R, Seidel M. Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays. Microchim Acta. 2011;173:1–9.CrossRefGoogle Scholar
  37. 37.
    Du M, Li J, Zhao R, Yang Y, Wang Y, Ma K, et al. Effective pre-treatment technique based on immune-magnetic separation for rapid detection of trace levels of Salmonella in milk. Food Control. 2018;91:92–9.CrossRefGoogle Scholar
  38. 38.
    Dai F, Zhang M, Xu D, Yang Y, Wang J, Li M, et al. The development of methods for the detection of Salmonella in chickens by a combination of immunomagnetic separation and PCRs. Biotechnol Appl Biochem. 2016;64:888–94.CrossRefGoogle Scholar
  39. 39.
    Standardization Administration of the People's Republic of China. GB 4789.4-2016 national food safety standard. Food microbiological examination: Salmonella.Google Scholar
  40. 40.
    Chen J, Park B. Effect of immunomagnetic bead size on recovery of foodborne pathogenic bacteria. Int J Food Microbiol. 2018;267:1–8.CrossRefGoogle Scholar
  41. 41.
    Kalambur VS, Han B, Hammer BE, Shield TW, Bischof JC. In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology. 2005;16:1221–33.CrossRefGoogle Scholar
  42. 42.
    Antunović B. Influence of milk product type and its initial contamination on the efficiency of different methods for detection of Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli O157:H7. Mljekarstvo. 2018:3–11.Google Scholar
  43. 43.
    Papadakis G, Murasova P, Hamiot A, Tsougeni K, Kaprou G, Eck M, et al. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples. Biosens Bioelectron. 2018;111:52–8.CrossRefGoogle Scholar
  44. 44.
    Ye J, Liu Y, Li Y. Chemiluminescence fiber-optic biosensor coupled with immunomagnetic separation for rapid detection of E. coli O157: H7. Trans ASAE. 2002;45:473–8.Google Scholar
  45. 45.
    Wunderlich A, Torggler C, Elsässer D, Lück C, Niessner R, Seidel M. Rapid quantification method for Legionella pneumophila in surface water. Anal Bioanal Chem. 2016;408:1–11.CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Tan C, Fei R, Liu X, Zhou Y, Chen J, et al. Sensitive chemiluminescence immunoassay for E. coli O157:H7 detection with signal dual-amplification using glucose oxidase and laccase. Anal Chem. 2014;86:1115–22.CrossRefGoogle Scholar
  47. 47.
    Xiong J, Wang W, Zhou Y, Kong W, Wang Z, Fu Z. Ultra-sensitive chemiluminescent detection of Staphylococcus aureus, based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G. Microchim Acta. 2016;183:1507–12.CrossRefGoogle Scholar
  48. 48.
    Gehring AG, Albin DM, Irwin PL, Reed SA, Tu SI. Comparison of enzyme-linked immunomagnetic chemiluminescence with U.S. Food and Drug Administration's bacteriological analytical manual method for the detection of Escherichia coli O157:H7. J Microbiol Methods. 2006;67:527–33.CrossRefGoogle Scholar
  49. 49.
    Xia S, Yu Z, Liu D, Xu C, Lai W. Developing a novel immunochromatographic test strip with gold magnetic bifunctional nanobeads (GMBN) for efficient detection of Salmonella choleraesuis in milk. Food Control. 2016;59:507–12.CrossRefGoogle Scholar
  50. 50.
    Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, Lelli R, et al. A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. J Agric Food Chem. 2007;55(13):4933–9.CrossRefGoogle Scholar
  51. 51.
    Wang H, Li Y, Wang A, Slavik M. Rapid, sensitive, and simultaneous detection of three foodborne pathogens using magnetic nanobead-based immunoseparation and quantum dot-based multiplex immunoassay. J Food Prot. 2011;74(12):2039–47.CrossRefGoogle Scholar
  52. 52.
    Cho IH, Mauer L, Irudayaraj J. In-situ fluorescent immunomagnetic multiplex detection of foodborne pathogens in very low numbers. Biosens Bioelectron. 2014;57:143–8.CrossRefGoogle Scholar
  53. 53.
    Laube T, Cortés P, Llagostera M, Alegret S, Pividori I. Phagomagnetic immunoassay for the rapid detection of Salmonella. Appl Microbiol Biotechnol. 2014;98(4):1795–805.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jingwen Li
    • 1
  • Qingjun Liu
    • 1
  • Yuping Wan
    • 2
  • Xiaosheng Wu
    • 2
  • Yin Yang
    • 1
  • Ruixue Zhao
    • 1
  • Erning Chen
    • 1
  • Xiaoyan Cheng
    • 1
  • Meihong Du
    • 1
    Email author
  1. 1.Beijing Engineering Research Center of Food Safety Analysis, Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing Center for Physical and Chemical AnalysisBeijingChina
  2. 2.Beijing Engineering Research Center of Food Safety Immune Rapid DetectionBeijing Kwinbon Biotechnology Co. Ltd.BeijingChina

Personalised recommendations