Oriented assembly of surface plasmon resonance biosensor through staphylococcal protein A for the chlorpyrifos detection

  • Qian Li
  • Xiaowen Dou
  • Lei Zhang
  • Xiangsheng Zhao
  • Jiaoyang Luo
  • Meihua YangEmail author
Research Paper


In this study, we report a direct surface plasmon resonance (SPR) biosensor based on an oriented assembly of antibody for the rapid detection of chlorpyrifos residue in agricultural samples. In this covalent-orientated strategy, staphylococcal protein A (SPA) was first covalently bound to the surface for monitoring chlorpyrifos residue, with subsequent binding of the antibody in an orientated fashion via its fragment crystallizable (Fc) region. Consequently, the SPA-modified biosensor exhibited a satisfactory specificity and a low detection limit of 0.056 ng mL−1 for chlorpyrifos, with a linear detection range of 0.25–50.0 ng mL−1. Under optimal conditions, the sensor chip could be regenerated for at least 210 cycles. The results presented here indicate that the SPA-modified sensor chip can successfully improve the sensitivity and obviating the need of the modification of the antibody. The developed SPR biosensor method has the great potential for rapid, sensitive, and specific detection with broad applications in areas of environmental monitoring and food safety.

Graphical abstract


SPR biosensor Antibody immobilization strategy Chlorpyrifos Staphylococcal protein A (SPA) Agricultural product monitoring 



The authors acknowledge Beijing Inter-bio Tech CO., LTD, for providing the surface plasmon resonance device.

Funding information

This work was supported by the National Natural Science Foundation of China (No. 81703699, 81573595, and 81603398), the National Project for Standardization of Chinese Materia Medica (No. ZYBZH-Y-JIN-34), CAMS Innovation Fund for Medical Sciences (No. 2017-I2M-1-013), and the Graduate Student Innovation Fund of Peking Union Medical College (No. 2017-1007-14).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Harshit D, Charmy K, Nrupesh P. Organophosphorus pesticides determination by novel HPLC and spectrophotometric method. Food Chem. 2017;230:448–53.CrossRefGoogle Scholar
  2. 2.
    Gupta SC, Mishra M, Sharma A, Deepak Balaji TG, Kumar R, Mishra RK, et al. Chlorpyrifos induces apoptosis and DNA damage in Drosophila through generation of reactive oxygen species. Ecotoxicol Environ Saf. 2010;73(6):1415–23.CrossRefGoogle Scholar
  3. 3.
    Sotomayor V, Lascano C, D'Angelo AMP, Venturino A. Developmental and polyamine metabolism alterations in Rhinella arenarum embryos exposed to the organophosphate chlorpyrifos. Environ Toxicol Chem. 2012;31:2052–8.CrossRefGoogle Scholar
  4. 4.
    Khalil AM. Toxicological effects and oxidative stress responses in freshwater snail, Lanistes carinatus, following exposure to chlorpyrifos. Ecotoxicol Environ Saf. 2015;116:137–42.CrossRefGoogle Scholar
  5. 5.
    Lee W, Byung Keun O, Min Bae Y, Paek SH, Hong Lee W, Choi JW. Fabrication of self-assembled protein a monolayer and its application as an immunosensor. Biosens Bioelectron. 2003;19(3):185–92.CrossRefGoogle Scholar
  6. 6.
    Dou XW, Zhang L, Liu C, Li Q, Luo J, Yang MH. Fluorometric competitive immunoassay for chlorpyrifos using rhodamine-modified gold nanoparticles as a label. Microchimca Acta. 2017;185(1):41.Google Scholar
  7. 7.
    Kim Young AH, Lee EH, Kim Kwang OK, Lee YT, Hammock BD, Lee HS. Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos. Anal Chim Acta. 2011;693:106–13.CrossRefGoogle Scholar
  8. 8.
    Xu ZL, Wang Q, Lei HT, Eremin SA, Shen YD, Wang H, et al. A simple, rapid and high-throughput fluorescence polarization immunoassay for simultaneous detection of organophosphorus pesticides in vegetable and environmental water samples. Anal Chim Acta. 2011;708(1–2):123–9.CrossRefGoogle Scholar
  9. 9.
    Sun Z, Wang W, Wen H, Gan C, Lei H, Liu Y. Sensitive electrochemical immunoassay for chlorpyrifos by using flake-like Fe3O4 modified carbon nanotubes as the enhanced multienzyme label. Anal Chim Acta. 2015;899:91–9.CrossRefGoogle Scholar
  10. 10.
    Daems D, Lu J, Delport F, Marien N, Orbie L, Aernouts B, et al. Competitive inhibition assay for the detection of progesterone in dairy milk using a fiber optic SPR biosensor. Anal Chim Acta. 2017;950:1–6.CrossRefGoogle Scholar
  11. 11.
    Shi S, Wang L, Su R, Liu B, Huang R, Qi W, et al. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays. Biosens Bioelectron. 2015;74:454–60.CrossRefGoogle Scholar
  12. 12.
    Zhang P, Chen Y-P, Wang W, Shen Y, Guo J-S. Surface plasmon resonance for water pollutant detection and water process analysis. TrAC Trends Anal Chem. 2016;85:153–65.CrossRefGoogle Scholar
  13. 13.
    Gao YM, Zou F, Wu BP, Wang XX, Zhang JJ, Koh K, et al. CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy. Biosens Bioelectron. 2016;81:207–13.CrossRefGoogle Scholar
  14. 14.
    Fen YW, Yunus WM, Talib ZA, Yusof NA. Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe. Spectrochim Acta A. 2015;134:48–52.CrossRefGoogle Scholar
  15. 15.
    Masson JF. Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2017;2(1):16–30.Google Scholar
  16. 16.
    Genslein C, Hausler P, Kirchner EM, Bierl R, Baeumner AJ, Hirsch T. Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples. Beilstein J Nanotech. 2016;7:1564–73.Google Scholar
  17. 17.
    Vaisocherova-Lisalova H, Visova I, Ermini ML, Springer T, Song XC, Mrazek J, et al. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens Bioelectron. 2016;80:84–90.CrossRefGoogle Scholar
  18. 18.
    Liu X, Hu Y, Zheng S, Liu Y, He Z, Luo F. Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticles-enriched Salmonella enteritidis. Sensors Actuators B Chem. 2016;230:191–8.CrossRefGoogle Scholar
  19. 19.
    Shankaran DR, Gobi KV, Miura N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors Actuators B Chem. 2007;121(1):158–77.CrossRefGoogle Scholar
  20. 20.
    Feng L, Zhu A, Wang H, Shi H. A nanosensor based on quantum-dot haptens for rapid, on-site immunoassay of cyanotoxin in environmental water. Biosens Bioelectron. 2014;53:1–4.CrossRefGoogle Scholar
  21. 21.
    Li S, Wu Q, Ma P, Zhang Y, Song D, Wang X, et al. A sensitive SPR biosensor based on hollow gold nanospheres and improved sandwich assay with PDA-Ag-Fe3O4-rGO. Talanta. 2018;180:156–61.CrossRefGoogle Scholar
  22. 22.
    Shynkarenko OV, Kravchenko SA. Surface plasmon resonance sensors: methods of surface functionalization and sensitivity enhancement. Theor Exp Chem. 2015;51(5):273–92.CrossRefGoogle Scholar
  23. 23.
    Vashist SK, Dixit CK, MacCraith BD, O’Kennedy R. Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay. Analyst. 2011;136(21):4431–6.CrossRefGoogle Scholar
  24. 24.
    Lu B, Smyth MR, O'Kennedy R. Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. Analyst. 1996;121:29–32.CrossRefGoogle Scholar
  25. 25.
    Mauriz E, Calle A, Lechuga LM, Quintana J, Montoya A, Manclús JJ. Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Anal Chim Acta. 2006;561(1–2):40–7.CrossRefGoogle Scholar
  26. 26.
    Thepudom T, Lertvachirapaiboon C, Shinbo K, Kato K, Kaneko F, Kerdcharoen T, Baba A. Surface plasmon resonance-enhanced photoelectrochemical sensor for detection of an organophosphate pesticide chlorpyrifos. MRS Commun. 2017;8(01):107–12.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qian Li
    • 1
  • Xiaowen Dou
    • 1
  • Lei Zhang
    • 1
  • Xiangsheng Zhao
    • 2
  • Jiaoyang Luo
    • 1
  • Meihua Yang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical SciencePeking Union Medical CollegeBeijingChina
  2. 2.Hainan Branch of the Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeHaikouChina

Personalised recommendations