Analytical and Bioanalytical Chemistry

, Volume 411, Issue 25, pp 6535–6547 | Cite as

Microfluidic sample delivery for serial crystallography using XFELs

  • Austin Echelmeier
  • Mukul Sonker
  • Alexandra RosEmail author


Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) is an emerging field for structural biology. One of its major impacts lies in the ability to reveal the structure of complex proteins previously inaccessible with synchrotron-based crystallography techniques and allowing time-resolved studies from femtoseconds to seconds. The nature of this serial technique requires new approaches for crystallization, data analysis, and sample delivery. With continued advancements in microfabrication techniques, various developments have been reported in the past decade for innovative and efficient microfluidic sample delivery for crystallography experiments using XFELs. This article summarizes the recent developments in microfluidic sample delivery with liquid injection and fixed-target approaches, which allow exciting new research with XFELs.

Graphical abstract


Protein Nozzle Injector Fixed-target Mixing Time-resolved 



Financial support from the STC Program of the National Science Foundation through BioXFEL under Agreement No. 1231306 and the National Institutes of Health Award No. R01GM095583 is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A, et al. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470(7332):73–7.Google Scholar
  2. 2.
    Schlichting I. Serial femtosecond crystallography: the first five years. IUCrJ. 2015;2(2):246–55.Google Scholar
  3. 3.
    Chapman HN. X-ray free-electron lasers for the structure and dynamics of macromolecules. Annu Rev Biochem. 2019;88(1).Google Scholar
  4. 4.
    Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature. 2000;406(6797):752–7.Google Scholar
  5. 5.
    Barty A, Kirian RA, Maia FR, Hantke M, Yoon CH, White TA, et al. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J Appl Crystallogr. 2014;47(3):1118–31.Google Scholar
  6. 6.
    White TA, Kirian RA, Martin AV, Aquila A, Nass K, Barty A, et al. CrystFEL: a software suite for snapshot serial crystallography. J Appl Crystallogr. 2012;45(2):335–41.Google Scholar
  7. 7.
    White TA. Processing serial crystallography data with CrystFEL: a step-by-step guide. Acta Crystallogr D Struct Biol. 2019;75(2):219–33.Google Scholar
  8. 8.
    Spence JC, Doak RB. Single molecule diffraction. Phys Rev Lett. 2004;92(19):198102.Google Scholar
  9. 9.
    Bogan MJ, Benner WH, Boutet S, Rohner U, Frank M, Barty A, et al. Single particle X-ray diffractive imaging. Nano Lett. 2008;8(1):310–6.Google Scholar
  10. 10.
    Johansson LC, Stauch B, Ishchenko A, Cherezov V. A bright future for serial femtosecond crystallography with XFELs. Trends Biochem Sci. 2017;42(9):749–62.Google Scholar
  11. 11.
    Barty A, Kupper J, Chapman HN. Molecular imaging using X-ray free-electron lasers. Annu Rev Phys Chem. 2013;64(1):415–35.Google Scholar
  12. 12.
    Boutet S, Lomb L, Williams GJ, Barends TR, Aquila A, Doak RB, et al. High-resolution protein structure determination by serial femtosecond crystallography. Science. 2012;337(6092):362–4.Google Scholar
  13. 13.
    Hunter MS, Segelke B, Messerschmidt M, Williams GJ, Zatsepin NA, Barty A, et al. Fixed-target protein serial microcrystallography with an x-ray free electron laser. Sci Rep. 2014;4(1):6026.Google Scholar
  14. 14.
    Lee J-H, Zatsepin NA, Kim KH. Time-resolved serial femtosecond X-ray crystallography. BioDesign. 2018;6(1):15–22.Google Scholar
  15. 15.
    Altarelli M, Mancuso AP. Structural biology at the European X-ray free-electron laser facility. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1647):20130311.Google Scholar
  16. 16.
    Wiedorn MO, Oberthur D, Bean R, Schubert R, Werner N, Abbey B, et al. Megahertz serial crystallography. Nat Commun. 2018;9(1):4025.Google Scholar
  17. 17.
    Martiel I, Muller-Werkmeister HM, Cohen AE. Strategies for sample delivery for femtosecond crystallography. Acta Crystallogr D Struct Biol. 2019;75(2):160–77.Google Scholar
  18. 18.
    Weierstall U. Liquid sample delivery techniques for serial femtosecond crystallography. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1647):20130337.Google Scholar
  19. 19.
    DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D, Spence JCH, et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D Appl Phys. 2008;41(19):195505.Google Scholar
  20. 20.
    Weierstall U, Spence JC, Doak RB. Injector for scattering measurements on fully solvated biospecies. Rev Sci Instrum. 2012;83(3):035108.Google Scholar
  21. 21.
    Oberthuer D, Knoška J, Wiedorn MO, Beyerlein KR, Bushnell DA, Kovaleva EG, et al. Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep. 2017;7(1):44628.Google Scholar
  22. 22.
    Calvey GD, Katz AM, Schaffer CB, Pollack L. Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers. Struct Dyn. 2016;3(5):054301.Google Scholar
  23. 23.
    Lomb L, Steinbrener J, Bari S, Beisel D, Berndt D, Kieser C, et al. An anti-settling sample delivery instrument for serial femtosecond crystallography. J Appl Crystallogr. 2012;45(4):674–8.Google Scholar
  24. 24.
    Hutchison CDM, Cordon-Preciado V, Morgan RML, Nakane T, Ferreira J, Dorlhiac G, et al. X-ray free electron laser determination of crystal structures of dark and light states of a reversibly photoswitching fluorescent protein at room temperature. Int J Mol Sci. 2017;18(9):1918.Google Scholar
  25. 25.
    Beyerlein KR, Adriano L, Heymann M, Kirian R, Knoska J, Wilde F, et al. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery. Rev Sci Instrum. 2015;86(12):125104.Google Scholar
  26. 26.
    Wojtas DH, Ayyer K, Liang M, Mossou E, Romoli F, Seuring C, et al. Analysis of XFEL serial diffraction data from individual crystalline fibrils. IUCrJ. 2017;4(6):795–811.Google Scholar
  27. 27.
    Piotter V, Klein A, Plewa K, Beyerlein KR, Chapman HN, Bajt S. Development of a ceramic injection molding process for liquid jet nozzles to be applied for X-ray free-electron lasers. Microsyst Technol. 2018;24(2):1247–52.Google Scholar
  28. 28.
    Trebbin M, Kruger K, DePonte D, Roth SV, Chapman HN, Forster S. Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. Lab Chip. 2014;14(10):1733–45.Google Scholar
  29. 29.
    Sia SK, Whitesides GM. Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis. 2003;24(21):3563–76.Google Scholar
  30. 30.
    Nguyen NT, Hejazian M, Ooi CH, Kashaninejad N. Recent advances and future perspectives on microfluidic liquid handling. Micromachines. 2017;8(6):186.Google Scholar
  31. 31.
    Nelson G, Kirian RA, Weierstall U, Zatsepin NA, Farago T, Baumbach T, et al. Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery. Opt Express. 2016;24(11):11515–30.Google Scholar
  32. 32.
    Bohne S, Heymann M, Chapman HN, Trieu HK, Bajt S. 3D printed nozzles on a silicon fluidic chip. Rev Sci Instrum. 2019;90(3):035108.Google Scholar
  33. 33.
    Stagno JR, Liu Y, Bhandari YR, Conrad CE, Panja S, Swain M, et al. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature. 2017;541(7636):242–6.Google Scholar
  34. 34.
    Kupitz C, Olmos JL Jr, Holl M, Tremblay L, Pande K, Pandey S, et al. Structural enzymology using X-ray free electron lasers. Struct Dyn. 2017;4(4):044003.Google Scholar
  35. 35.
    Wang D, Weierstall U, Pollack L, Spence J. Double-focusing mixing jet for XFEL study of chemical kinetics. J Synchrotron Radiat. 2014;21(6):1364–6.Google Scholar
  36. 36.
    Olmos JL Jr, Pandey S, Martin-Garcia JM, Calvey G, Katz A, Knoska J, et al. Enzyme intermediates captured "on the fly" by mix-and-inject serial crystallography. BMC Biol. 2018;16(1):59.Google Scholar
  37. 37.
    Ishigami I, Lewis-Ballester A, Echelmeier A, Brehm G, Zatsepin NA, Grant TD, et al. Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome c oxidase. Proc Natl Acad Sci U S A. 2019;116(9):3572–7.Google Scholar
  38. 38.
    Kim D, Echelmeier A, Villarreal JC, Gandhi S, Quintana S, Egatz-Gomez A et al. Electric triggering for enhanced control of droplet generation. Anal Chem. 2019, submitted.Google Scholar
  39. 39.
    Mafune F, Miyajima K, Tono K, Takeda Y, Kohno JY, Miyauchi N, et al. Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta Crystallogr D Struct Biol. 2016;72(4):520–3.Google Scholar
  40. 40.
    Roessler CG, Agarwal R, Allaire M, Alonso-Mori R, Andi B, Bachega JFR, et al. Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure. 2016;24(4):631–40.Google Scholar
  41. 41.
    Fuller FD, Gul S, Chatterjee R, Burgie ES, Young ID, Lebrette H, et al. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat Methods. 2017;14(4):443–9.Google Scholar
  42. 42.
    Weierstall U, James D, Wang C, White TA, Wang D, Liu W, et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun. 2014;5(1):3309.Google Scholar
  43. 43.
    Echelmeier A, Nelson G, Abdallah BG, James D, Roy-Chowdhury S, Tolstikova A, et al. Biphasic droplet-based sample delivery of protein crystals for serial femtosecond crystallography with an x-ray free electron laser. MicroTAS - Int Conf Miniaturized Syst Chem Life Sci. 2015;19:1374–6.Google Scholar
  44. 44.
    Kubo M, Nango E, Tono K, Kimura T, Owada S, Song C, et al. Nanosecond pump-probe device for time-resolved serial femtosecond crystallography developed at SACLA. J Synchrotron Radiat. 2017;24(5):1086–91.Google Scholar
  45. 45.
    Sierra RG, Gati C, Laksmono H, Dao EH, Gul S, Fuller F, et al. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II. Nat Methods. 2016;13(1):59–62.Google Scholar
  46. 46.
    Young ID, Ibrahim M, Chatterjee R, Gul S, Fuller F, Koroidov S, et al. Structure of photosystem II and substrate binding at room temperature. Nature. 2016;540(7633):453–7.Google Scholar
  47. 47.
    Ganan-Calvo AM, Montanero JM. Revision of capillary cone-jet physics: electrospray and flow focusing. Phys Rev E Stat Nonlinear Soft Matter Phys. 2009;79(6):066305.Google Scholar
  48. 48.
    Sierra RG, Laksmono H, Kern J, Tran R, Hattne J, Alonso-Mori R, et al. Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr. 2012;68(11):1584–7.Google Scholar
  49. 49.
    Dao EH, Poitevin F, Sierra RG, Gati C, Rao Y, Ciftci HI, et al. Structure of the 30S ribosomal decoding complex at ambient temperature. Rna. 2018;24(12):1667–76.Google Scholar
  50. 50.
    O'Sullivan ME, Poitevin F, Sierra RG, Gati C, Dao EH, Rao Y, et al. Aminoglycoside ribosome interactions reveal novel conformational states at ambient temperature. Nucleic Acids Res. 2018;46(18):9793–804.Google Scholar
  51. 51.
    Kern J, Alonso-Mori R, Tran R, Hattne J, Gildea RJ, Echols N, et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science. 2013;340(6131):491–5.Google Scholar
  52. 52.
    Landau EM, Rosenbusch JP. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A. 1996;93(25):14532–5.Google Scholar
  53. 53.
    Cherezov V. Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol. 2011;21(4):559–66.Google Scholar
  54. 54.
    Stauch B, Cherezov V. Serial femtosecond crystallography of G protein-coupled receptors. Annu Rev Biophys. 2018;47(1):377–97.Google Scholar
  55. 55.
    Ishchenko A, Gati C, Cherezov V. Structural biology of G protein-coupled receptors: new opportunities from XFELs and cryoEM. Curr Opin Struct Biol. 2018;51:44–52.Google Scholar
  56. 56.
    Sugahara M, Mizohata E, Nango E, Suzuki M, Tanaka T, Masuda T, et al. Grease matrix as a versatile carrier of proteins for serial crystallography. Nat Methods. 2015;12(1):61.Google Scholar
  57. 57.
    Sugahara M, Song C, Suzuki M, Masuda T, Inoue S, Nakane T, et al. Oil-free hyaluronic acid matrix for serial femtosecond crystallography. Sci Rep. 2016;6(1):24484.Google Scholar
  58. 58.
    Conrad CE, Basu S, James D, Wang D, Schaffer A, Roy-Chowdhury S, et al. A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ. 2015;2(4):421–30.Google Scholar
  59. 59.
    Park J, Park S, Kim J, Park G, Cho Y, Nam KH. Polyacrylamide injection matrix for serial femtosecond crystallography. Sci Rep. 2019;9(1):2525.Google Scholar
  60. 60.
    Nogly P, Panneels V, Nelson G, Gati C, Kimura T, Milne C, et al. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nat Commun. 2016;7(1):12314.Google Scholar
  61. 61.
    Nango E, Royant A, Kubo M, Nakane T, Wickstrand C, Kimura T, et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science. 2016;354(6319):1552–7.Google Scholar
  62. 62.
    Nogly P, Weinert T, James D, Carbajo S, Ozerov D, Furrer A, et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science. 2018;361(6398):eaat0094.Google Scholar
  63. 63.
    Suga M, Akita F, Sugahara M, Kubo M, Nakajima Y, Nakane T, et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature. 2017;543(7643):131–5.Google Scholar
  64. 64.
    Tosha T, Nomura T, Nishida T, Saeki N, Okubayashi K, Yamagiwa R, et al. Capturing an initial intermediate during the P450nor enzymatic reaction using time-resolved XFEL crystallography and caged-substrate. Nat Commun. 2017;8(1):1585.Google Scholar
  65. 65.
    Seibert MM, Ekeberg T, Maia FR, Svenda M, Andreasson J, Jonsson O, et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 2011;470(7332):78–81.Google Scholar
  66. 66.
    Chavas LM, Gumprecht L, Chapman HN. Possibilities for serial femtosecond crystallography sample delivery at future light sources. Struct Dyn. 2015;2(4):041709.Google Scholar
  67. 67.
    Hantke MF, Hasse D, Maia FRNC, Ekeberg T, John K, Svenda M, et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nat Photonics. 2014;8(12):943–9.Google Scholar
  68. 68.
    Hantke MF, Hasse D, Ekeberg T, John K, Svenda M, Loh D, et al. A data set from flash X-ray imaging of carboxysomes. Sci Data. 2016;3(1):160061.Google Scholar
  69. 69.
    Kirian RA, Awel S, Eckerskorn N, Fleckenstein H, Wiedorn M, Adriano L, et al. Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers. Struct Dyn. 2015;2(4):041717.Google Scholar
  70. 70.
    Awel S, Kirian RA, Wiedorn MO, Beyerlein KR, Roth N, Horke DA, et al. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. J Appl Crystallogr. 2018;51(1):133–9.Google Scholar
  71. 71.
    Schulz EC, Kaub J, Busse F, Mehrabi P, Muller-Werkmeister HM, Pai EF, et al. Protein crystals IR laser ablated from aqueous solution at high speed retain their diffractive properties: applications in high-speed serial crystallography. J Appl Crystallogr. 2017;50(6):1773–81.Google Scholar
  72. 72.
    Grunbein ML, Nass Kovacs G. Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr D Struct Biol. 2019;75(2):178–91.Google Scholar
  73. 73.
    Ghazal A, Lafleur JP, Mortensen K, Kutter JP, Arleth L, Jensen GV. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences. Lab Chip. 2016;16(22):4263–95.Google Scholar
  74. 74.
    Murray TD, Lyubimov AY, Ogata CM, Vo H, Uervirojnangkoorn M, Brunger AT, et al. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. Acta Crystallogr D Biol Crystallogr. 2015;71(10):1987–97.Google Scholar
  75. 75.
    Mueller C, Marx A, Epp SW, Zhong Y, Kuo A, Balo AR, et al. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography. Struct Dyn. 2015;2(5):054302.Google Scholar
  76. 76.
    Roedig P, Ginn HM, Pakendorf T, Sutton G, Harlos K, Walter TS, et al. High-speed fixed-target serial virus crystallography. Nat Methods. 2017;14(8):805–10.Google Scholar
  77. 77.
    Lyubimov AY, Murray TD, Koehl A, Araci IE, Uervirojnangkoorn M, Zeldin OB, et al. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. Acta Crystallogr D Biol Crystallogr. 2015;71(4):928–40.Google Scholar
  78. 78.
    Mathews II, Allison K, Robbins T, Lyubimov AY, Uervirojnangkoorn M, Brunger AT, et al. The conformational flexibility of the acyltransferase from the disorazole polyketide synthase is revealed by an X-ray free-electron laser using a room-temperature sample delivery method for serial crystallography. Biochemistry. 2017;56(36):4751–6.Google Scholar
  79. 79.
    Oghbaey S, Sarracini A, Ginn HM, Pare-Labrosse O, Kuo A, Marx A, et al. Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography. Acta Crystallogr Sect D. 2016;72(8):944–55.Google Scholar
  80. 80.
    Daewoong N, Chan K, Yoonhee K, Tomio E, Marcus G-J, Jaehyun P, et al. Fixed target single-shot imaging of nanostructures using thin solid membranes at SACLA. J Phys B Atomic Mol Phys. 2016;49(3):034008.Google Scholar
  81. 81.
    Górzny MŁ, Opara NL, Guzenko VA, Cadarso VJ, Schift H, Li XD, et al. Microfabricated silicon chip as lipid membrane sample holder for serial protein crystallography. Micro and Nano Eng. 2019;3:31–6.Google Scholar
  82. 82.
    Schieferstein JM, Pawate AS, Varel MJ, Guha S, Astrauskaite I, Gennis RB, et al. X-ray transparent microfluidic platforms for membrane protein crystallization with microseeds. Lab Chip. 2018;18(6):944–54.Google Scholar
  83. 83.
    Denz M, Brehm G, Hemonnot CYJ, Spears H, Wittmeier A, Cassini C, et al. Cyclic olefin copolymer as an X-ray compatible material for microfluidic devices. Lab Chip. 2017;18(1):171–8.Google Scholar
  84. 84.
    Doak RB, Nass Kovacs G, Gorel A, Foucar L, Barends TRM, Grunbein ML, et al. Crystallography on a chip - without the chip: sheet-on-sheet sandwich. Acta Crystallogr D Struct Biol. 2018;74(10):1000–7.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Austin Echelmeier
    • 1
    • 2
  • Mukul Sonker
    • 1
    • 2
  • Alexandra Ros
    • 1
    • 2
    Email author
  1. 1.School of Molecular SciencesArizona State UniversityTempeUSA
  2. 2.Center for Applied Structural Discovery, The Biodesign InstituteArizona State UniversityTempeUSA

Personalised recommendations