NdFeO3 as a new electrocatalytic material for the electrochemical monitoring of dopamine

  • Z. Anajafi
  • M. Naseri
  • S. Marini
  • C. Espro
  • D. Iannazzo
  • S. G. Leonardi
  • G. NeriEmail author
Research Paper
Part of the following topical collections:
  1. New Developments in Biosensors


A new electrochemical sensor, based on NdFeO3 nanoparticles as electrocatalytic material, was proposed here for the detection of dopamine (DA). NdFeO3 nanoparticles were first synthesized by a simple thermal treatment method and subsequent annealing at high temperature (700 °C). The prepared electrocatalytic material has been characterized in detail by SEM-EDX, XRD, and Raman techniques. Characterization results display its sheet-like morphology, constituted by a porous network of very small orthorhombic NdFeO3 nanoparticles. NdFeO3 electrocatalytic material was then used to modify the working electrode of screen-printed carbon electrodes (SPCEs). Electrochemical tests demonstrated that NdFeO3– modified screen-printed carbon electrode (NdFeO3/SPCE) exhibited a remarkable enhancement of the dopamine electrooxidation, compared to the bare SPCE one. The analytical performance of the developed sensor has been evaluated for the detection of this analyte by means of the square-wave voltammetry (SWV) technique. The modified electrode showed two linear concentration ranges, from 0.5 to 100 μM and 150 to 400 μM, respectively, a limit of detection (LOD) of 0.27 μM (at S/N = 3), and good reproducibility, stability, and selectivity. Additionally, we also report an attempt made to propose the modified sensor for the simultaneous detection of dopamine and uric acid (UA). The procedure was also applied for the determination of dopamine in spiked real samples. So, this paper reports for the first time the use of a modified NdFeO3 screen-printed electrode for developing an electrochemical sensor for the quantification of important biomolecules.

Graphical abstract


NdFeO3 Electrochemical sensor Dopamine Uric acid 


Compliance with ethical standards

Compliance with ethical standards

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_1975_MOESM1_ESM.pdf (153 kb)
ESM 1 (PDF 153 kb)


  1. 1.
    Kurian MA, Gissen P, Smith M, Heales SJ, Clayton PT. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol. 2011;10:721.CrossRefGoogle Scholar
  2. 2.
    Amara SG, Kuhar MJ. Neurotransmitter transporters: recent progress. Annu Rev Neurosci. 1993;16:73.CrossRefGoogle Scholar
  3. 3.
    Castro SS, Mortimer RJ, De Oliveira MF, Stradiotto NR. Electrooxidation and determination of dopamine using a nafion®-cobalt hexacyanoferrate film modified electrode. Sensors. 2008;8:1950.CrossRefGoogle Scholar
  4. 4.
    Mazloum-Ardakani M, Rajabi H, Beitollahi H, Mirjalili B, Akbari A, Taghavinia N. Voltammetric determination of dopamine at the surface of TiO2 nanoparticles modified carbon paste electrode. Int J Electrochem Sci. 2010;5:147.Google Scholar
  5. 5.
    Guan CL, Ouyang J, Li QL, Liu BH, Baeyens WRG. Simultaneous determination of catecholamines by ion chromatography with direct conductivity detection. Talanta. 2000;50:1197.CrossRefGoogle Scholar
  6. 6.
    Li L, Liu HY, Shen YY, Zhang JR, Zhu JJ. Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine. Anal Chem. 2011;83:661.CrossRefGoogle Scholar
  7. 7.
    Wu HP, Cheng TL, Tseng WL. Phosphate-modified TiO2 nanoparticles for selective detection of dopamine, levodopa, adrenaline, and catechol based on fluorescence quenching. Langmuir. 2007;23:7880.CrossRefGoogle Scholar
  8. 8.
    Jackowska K, Krysinski P. New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem. 2013;405:3753.CrossRefGoogle Scholar
  9. 9.
    Zhao D, Yu G, Tian K, Xu C. A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens Bioelectron. 2016;82:119.CrossRefGoogle Scholar
  10. 10.
    Cheng M, Zhang X, Wang M, Huang H, Ma J. A facile electrochemical sensor based on well-dispersed graphene-molybdenum disulfide modified electrode for highly sensitive detection of dopamine. J Electroanal Chem. 2017;786:1–7.CrossRefGoogle Scholar
  11. 11.
    Pandiselvi K, Thambidurai S. Chitosan–ZnO/polyaniline nanocomposite modified glassy carbon electrode for selective detection of dopamine. Int J Bio Macromolecules. 2014;67:270.CrossRefGoogle Scholar
  12. 12.
    Blanco-López MC, Rivas M. Anal Bioanal Chem. 2019.
  13. 13.
    Wang G, Sun J, Zhang W, Jiao S, Fang B. Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode. Microchim Acta. 2009;164:357.CrossRefGoogle Scholar
  14. 14.
    Thirumalairajan S, Girija K, Ganesh V, Mangalaraj D, Viswanathan C, Ponpandian N. Detection of the neurotransmitter dopamine by a glassy carbon electrode modified with self-assembled perovskite LaFeO3 microspheres made up of nanospheres. RSC Adv. 2014;4:25957.CrossRefGoogle Scholar
  15. 15.
    Thirumalairajan S, Girija K, Ganesh V, Mangalaraj D, Viswanathan C, Ponpandian N. Cryst Growth Des. 2013;13:291.CrossRefGoogle Scholar
  16. 16.
    El-Ads EH, Atta NF, Galal A, Eid NA. Novel synthesis of LaFeO3 nanostructure dendrites: a systematic investigation of growth mechanism, properties, and biosensing for highly selective determination of neurotransmitter compoundsInt. J Electrochem Sci. 2018;13:1452.CrossRefGoogle Scholar
  17. 17.
    Atta NF, Binsabt MH, El-Ads E. EH, Galal a. synthesis of neodymium-iron nanoperovskite for sensing applications of an antiallergic drug. Turk J Chem. 2017;41:476.CrossRefGoogle Scholar
  18. 18.
    Singh S, Singh A, Yadav BC, Dwivedi PK. Electrochemically reduced graphene oxide and Nafion nanocomposite for ultralow potential detection of organophosphate pesticide. Sensors Actuators B Chem. 2013;177:730–9.CrossRefGoogle Scholar
  19. 19.
    Xinshu N, Weimin D, Weiping D, Kai J. Preparation and gas-sensing properties of NdFeO3 nanocrystalline. J Rare Earths. 2003;21:630–2.Google Scholar
  20. 20.
    Lou X, Jia X, Preparation XJ. Gas sensing property for C2H5OH detection of perovskite-type NdFeO3. J Rare Earths. 2005;23:328–31.Google Scholar
  21. 21.
    Atta NF, El-Ads EH, Galal A. Evidence of core-shell formation between NdFeO3 nano-perovskite and ionic liquid crystal and its application in electrochemical sensing of metoclopramide. J Electrochem Soc. 2016;163:B325–34.CrossRefGoogle Scholar
  22. 22.
    Naseri MG, MajlesAra M, Saion E, Shaari A. Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method. J Magn Magn Mater. 2014;350:141.CrossRefGoogle Scholar
  23. 23.
    Naseri MG, Halimah MK, Dehzangi A, Kamalianfar A, Saion E. A comprehensive overview on the structure and comparison of magnetic properties of nanocrystalline synthesized by a thermal treatment method. J Phys Chem Solids. 2014;75:315.CrossRefGoogle Scholar
  24. 24.
    Mocak J, Bond A, Mitchell S, Scollary G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques. Pure Appl Chem. 1997;69:297–328.CrossRefGoogle Scholar
  25. 25.
    Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry, 5th ed. Essex: Pearson Education; 2005. p. 121–3.Google Scholar
  26. 26.
    Navarro MC, Pannunzio-Miner EV, Pagola S, Gomez MI, Carbonio R. Structural refinement of Nd[Fe(CN)6]·4H2O and study of NdFeO3 obtained by its oxidative thermal decomposition at very low temperatures. J Solid State Chem. 2005;178:847.CrossRefGoogle Scholar
  27. 27.
    Li H, Wang J, Liu M, Wang H, Su P, Wu J, et al. A nanoporous oxide interlayer makes a better Pt catalyst on a metallic substrate: nanoflowers on a nanotube bed. Nano Res. 2014;7:1007.CrossRefGoogle Scholar
  28. 28.
    Fazio E, Spadaro S, Bonsignore M, Lavanya N, Sekar C, Leonardi SG, et al. Molybdenum oxide nanoparticles for the sensitive and selective detection of dopamine. J Electroanal Chem. 2018;814:91.CrossRefGoogle Scholar
  29. 29.
    Atta NF, Shimaa MA, El-Ads HE, Galal A. Nano-perovskite carbon paste composite electrode for the simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochim Acta. 2014;128:16.CrossRefGoogle Scholar
  30. 30.
    Priatharshni S, Tamilselvan A, Viswanathan C, Ponpandian N. LaCoO3 nanostructures modified glassy carbon electrode for simultaneous electrochemical detection of dopamine, ascorbic acid and uric acid. J Electrochem Soc. 2017;164:B152–8.CrossRefGoogle Scholar
  31. 31.
    Vijayaraghavan T, Sivasubramanian R, Hussain S, Ashok A. A facile synthesis of LaFeO3-based perovskites and their application towards sensing of neurotransmitters. Chem Select. 2017;2:5570.Google Scholar
  32. 32.
    Grassi D, Ferri L, Desideri G, Di Gioiosa P, Cheli P, Del Pinto R, et al. Chronic hyperuricemia, uric acid deposit and cardiovascular risk. Curr Pharm Des. 2013;19:2432.CrossRefGoogle Scholar
  33. 33.
    Dong J, Hu Y, Zhu S, Xu J, Xu Y. A highly selective and sensitive dopamine and uric acid biosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid. Anal Bioanal Chem. 2010;396:1755.CrossRefGoogle Scholar
  34. 34.
    Lavanya N, Fazio E, Neri F, Bonavita A, Leonardi SG, Neri G, et al. Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode. Sensors Actuators B. 2015;221:1412–22.CrossRefGoogle Scholar
  35. 35.
    Lavanya N, Leonardi SG, Sekar C, Ficarra S, Galtieri A, Tellone E, et al. Detection of catecholamine neurotransmitters by nanostructured SnO2-based electrochemical sensors: a review of recent progress. Mini-Rev Org Chem. 2018;15:382–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceMalayer UniversityMalayerIran
  2. 2.Department of EngineeringUniversity of MessinaMessinaItaly

Personalised recommendations