Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 20, pp 5001–5005 | Cite as

The 2018 Nobel Prize in Physics: optical tweezers and chirped pulse amplification

  • Matthew C. Asplund
  • Jeremy A. Johnson
  • James E. PattersonEmail author
Feature Article
  • 92 Downloads

Abstract

The 2018 Nobel Prize in Physics was awarded to Arthur Ashkin (prize share ½), Gérard Mourou (prize share ¼), and Donna Strickland (prize share ¼) for “groundbreaking inventions in the field of laser physics.” This feature article summarizes the development of “optical tweezers and their application to biological systems” by Arthur Ashkin, as well as the Mourou/Strickland method of “generating high-intensity, ultrashort optical pulses” known as chirped pulse amplification. Further developments are also briefly discussed.

Keywords

Nobel Prize Optical tweezers Spatial control Chirped pulse amplification Ultrafast lasers 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett. 1970;24:156.CrossRefGoogle Scholar
  2. 2.
    Ashkin A, Dziedzic JM. Optical levitation by radiation pressure. Appl Phys Lett. 1971;19:283.CrossRefGoogle Scholar
  3. 3.
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett. 1986;11:288.CrossRefGoogle Scholar
  4. 4.
    Chu S, Bjorkholm JE, Ashkin A, Cable A. Experimental observation of optically trapped atoms. Phys Rev Lett. 1986;57:314.CrossRefGoogle Scholar
  5. 5.
    Ashkin A, Dziedzic JM. Optical trapping and manipulation of viruses and bacteria. Science. 1987;235:1517.CrossRefGoogle Scholar
  6. 6.
    Ashkin A, Dziedzic JM, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987;330:769.CrossRefGoogle Scholar
  7. 7.
    Ashkin A, Dziedzic JM. Internal cell manipulation using infrared laser traps. Proc Natl Acad Sci U S A. 1989;86:7914.CrossRefGoogle Scholar
  8. 8.
    Ashkin A, Schütze K, Dziedzic JM, Euteneuer U, Schliwa M. Force generation of organelle transport measured in vivo by an infrared laser trap. Nature. 1990;348:346.CrossRefGoogle Scholar
  9. 9.
    Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM. Direct observation of base-pair stepping by RNA polymerase. Nature. 2005;438:460.CrossRefGoogle Scholar
  10. 10.
    Strickland D, Mourou G. Compression of amplified chirped optical pulses. Opt Commun. 1985;56:219.CrossRefGoogle Scholar
  11. 11.
    Johnson AS, Wood D, Austin DR, Brahms C, Gregory A, Holzner K, et al. Apparatus for soft x-ray table-top high harmonic generation. Rev Sci Instrum. 2018;89:083110.CrossRefGoogle Scholar
  12. 12.
    Dunn MH, Ebrahimzadeh M. Parametric generation of tunable light from continuous-wave to femtosecond pulses. Science. 1999;286:1513–7.CrossRefGoogle Scholar
  13. 13.
    Weiner A. Ultrafast pulse shaping: a tutorial review. Opt Commun. 2011;284:3669.CrossRefGoogle Scholar
  14. 14.
    P. Hamm and M. T. Zanni. “Concepts and methods of 2D infrared spectroscopy”. Cambridge; 2011.Google Scholar
  15. 15.
    Oliver TAA. Recent advances in multidimensional ultrafast spectroscopy. R Soc Open Sci. 2018;5:171425.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Matthew C. Asplund
    • 1
  • Jeremy A. Johnson
    • 1
  • James E. Patterson
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryBrigham Young UniversityProvoUSA

Personalised recommendations