Analytical and Bioanalytical Chemistry

, Volume 411, Issue 20, pp 5223–5231 | Cite as

A triarylboron-based binuclear Zn(II) complex as a two-photon fluorescent probe for simultaneous multicolor imaging of the cell membrane, endoplasmic reticulum, and nucleolus

  • Jun Liu
  • Shilu Zhang
  • Jiang Zhu
  • Xuan LiuEmail author
  • Guoqiang YangEmail author
  • Xiaoming ZhangEmail author
Research Paper


The visualization of subcellular structures is critical for understanding their intracellular function. We prepared two triarylboron-based multinuclear Zn2+ complexes, TAB-1-3Zn2+ and TAB-2-2Zn2+, which can be used as fluorescent probes for nucleoside polyphosphate (NPP) and RNA because their multi Zn2+ center can selectively combine with the phosphate side chain of NPP or RNA, accompanied by a corresponding fluorescence change. Among them, TAB-2-2Zn2+ is more suitable than TAB-1-3Zn2+ for live cell imaging because of its excellent cell membrane permeability resulting from amphiphilicity. Since the various membrane structures in cells are also composed of phosphoric acid bilayers, TAB-2-2Zn2+ may also be used to image various membrane structures. Various colocalization experiments further confirmed that TAB-2-2Zn2+ can achieve clear simultaneous imaging of the cell membrane, the endoplasmic reticulum, and the nucleolus.

Graphical abstract


Triarylboron Zn(II) complexes Fluorescence probe Cell membrane Endoplasmic reticulum Nucleolus 



This work received funding from the National Natural Science Foundation of China (Grant Nos. 81801768, 21703062, 81871440), the Sichuan Science and Technology Department (Grant No. 2019YJ0385), the Scientific Research Project of Sichuan Provincial Department of Education (Grant No. 18ZA0200), the Bureau of Science & Technology and Intellectual Property Nanchong City (Grant Nos. 16YFZJ0121, 18SXHZ0491), and the North Sichuan Medical College (Grant No. CBY16-QD01).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2019_1896_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1274 kb)


  1. 1.
    Alberts B, Johnson A, Lewis J. Molecular biology of the cell. 4th ed. New York: Garland Science. ISBN 0-8153-3218-1; 2002.Google Scholar
  2. 2.
    Keeling PJ, Archibald JM. Organelle evolution: what’s in a name? Curr Biol. 2008;18:345–7.CrossRefGoogle Scholar
  3. 3.
    McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:551–60.CrossRefGoogle Scholar
  4. 4.
    Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol. 2007;8:574–85.CrossRefGoogle Scholar
  5. 5.
    Abeliovich A. Parkinson’s disease: mitochondrial damage control. Nature. 2010;463:744–5.CrossRefGoogle Scholar
  6. 6.
    Leung A, Andersen J, Lamond A. Bioinformatic analysis of the nucleolus. Biochem J. 2003;376:553–69.CrossRefGoogle Scholar
  7. 7.
    Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate J, et al. Crystal structure of the ribosome at 5.5 A resolution. Science. 2001;292:883–96.CrossRefGoogle Scholar
  8. 8.
    de la Cruz J, Karbstein K, Woolford JL. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu Rev Biochem. 2015;84:93–129.CrossRefGoogle Scholar
  9. 9.
    Savir Y, Tlusty T. Balancing speed and accuracy of polyclonal T cell activation: a role for extracellular feedback. Cell. 2013;153:471–9.CrossRefGoogle Scholar
  10. 10.
    Kramer M, Myers DR. Osmosis is not driven by water dilution. Trends Plant Sci. 2013;18:195–7.CrossRefGoogle Scholar
  11. 11.
    Zhang C, Jin S, Yang K, Xue X, Li Z, Jiang Y, et al. Cell membrane tracker based on restriction of intramolecular rotation. ACS Appl Mater Interfaces. 2014;6:8971–5.CrossRefGoogle Scholar
  12. 12.
    Yang Y, Zhao Q, Feng W, Li F. Luminescent chemodosimeters for bioimaging. Chem Rev. 2013;113:192–270.CrossRefGoogle Scholar
  13. 13.
    Zhao J, Wu W, Sun J, Guo S. Triplet photosensitizers: from molecular design to applications. Chem Soc Rev. 2013;42:5323–51.CrossRefGoogle Scholar
  14. 14.
    Derenzini M. The AgNORs. Micron. 2000;31:117–20.CrossRefGoogle Scholar
  15. 15.
    Zhu H, Fan J, Du J, Peng X. Fluorescent probes for sensing and imaging within specific cellular organelles. Acc Chem Res. 2016;49:2115–26.CrossRefGoogle Scholar
  16. 16.
    Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Discerning the chemistry in individual organelles with small molecule fluorescent probes. Angew Chem Int Ed. 2016;55:13658–99.CrossRefGoogle Scholar
  17. 17.
    Kikuchi K. Design, synthesis and biological application of chemical probes for bio-imaging. Chem Soc Rev. 2010;39:2048–53.CrossRefGoogle Scholar
  18. 18.
    Vendrell M, Zhai D, Er JC, Chang YT. Combinatorial strategies in fluorescent probe development. Chem Rev. 2012;112:4391–420.CrossRefGoogle Scholar
  19. 19.
    Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110:2620–40.CrossRefGoogle Scholar
  20. 20.
    Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, et al. Single cell optical imaging and spectroscopy. Chem Rev. 2013;113:2469–527.CrossRefGoogle Scholar
  21. 21.
    Xie N, Feng K, Shao J, Chen B, Tung C, Wu L. Luminescence-tunable polynorbornenes for simultaneous multicolor imaging in subcellular organelles. Biomacromolecules. 2018;19:2750–8.CrossRefGoogle Scholar
  22. 22.
    Zhou S, Peng X, Xu H, Qin Y, Jiang D, Qu J, et al. Simultaneous imaging of Zn2+ and Cu2+ in living cells based on DNAzyme modified gold nanoparticle. Anal Chem. 2015;87:4829–35.CrossRefGoogle Scholar
  23. 23.
    Kurishita Y, Kohira T, Ojida A, Hamachi I. Organelle-localizable fluorescent chemosensors for site-specific multicolor imaging of nucleoside polyphosphate dynamics in living cells. J Am Chem Soc. 2012;134:18779–89.CrossRefGoogle Scholar
  24. 24.
    Liu J, Guo X, Hu R, Xu J, Wang S, Li S, et al. Intracellular fluorescent temperature probe based on triarylboron substituted poly N-Isopropylacrylamide and energy transfer. Anal Chem. 2015;87:3694–8.CrossRefGoogle Scholar
  25. 25.
    Liu J, Guo X, Hu R, Liu X, Wang S, Li S, et al. Molecular engineering of aqueous soluble triarylboron-compound-based two-photon fluorescent probe for mitochondria H2S with analyte-induced finite aggregation and excellent membrane permeability. Anal Chem. 2016;88:1052–7.CrossRefGoogle Scholar
  26. 26.
    Liu J, Zhang S, Zhang C, Dong J, Shen C, Zhu J, et al. A water-soluble two-photon ratiometric triarylboron probe with nucleolar targeting by preferential RNA binding. Chem Commun. 2017;53:11476–9.CrossRefGoogle Scholar
  27. 27.
    Liu J, Li S, Zhang S, Shen C, Zhu J, Yang G, et al. Piperazine multi-substituted triarylboron compound as an aqueous soluble fluorescent probe for imaging nucleoli, nuclear matrix and nuclear membrane. Sensors Actuators B. 2018;261:531–6.CrossRefGoogle Scholar
  28. 28.
    Xu WJ, Liu SJ, Zhao XY, Sun S, Cheng S, Ma TC, et al. Cationic iridium(III) complex containing both triarylboron and carbazole moieties as a ratiometric fluoride probe that utilizes a switchable triplet–singlet emission. Eur J. 2010;16:7125–33.CrossRefGoogle Scholar
  29. 29.
    Wang S, Wu TZ, Park HJ, Peng T, Cao LX, Mellerup SK, et al. Highly stable Eu (III) and Tb (III) complexes based on triarylborane-functionalized cyclen derivatives as visual temperature probes and white-light emitters. Adv Opt Mater. 2016;4:1882–92.CrossRefGoogle Scholar
  30. 30.
    Wang X, Zhang L, Yang J, Dai F, Wang R, Sun D. Metal-ion metathesis and properties of triarylboron-functionalized metal–organic frameworks. Chem Asian J. 2015;10:1535–40.CrossRefGoogle Scholar
  31. 31.
    Li X, Guo X, Cao L, Xun Z, Wang S, Li S, et al. Water-soluble triarylboron compound for ATP imaging in vivo using analyte-induced finite aggregation. Angew Chem Int Ed. 2014;53:7809–13.CrossRefGoogle Scholar
  32. 32.
    Liu W, Zhou B, Niu G, Ge J, Wu J, Zhang H, et al. Deep-red emissive crescent-shaped fluorescent dyes: substituent effect on live cell imaging. ACS Appl Mater Interfaces. 2015;7:7421–7.CrossRefGoogle Scholar
  33. 33.
    Collot M, Kreder R, Tatarets AL, Patsenker LD, Mely Y, Klymchenko AS. Bright fluorogenic squaraines with tuned cell entry for selective imaging of plasma membrane vs. endoplasmic reticulum. Chem Commun. 2015;51:17136–9.CrossRefGoogle Scholar
  34. 34.
    Kufe DW. Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer. 2009;9:874–85.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College & Department of Chemistry, School of Preclinical MedicineNorth Sichuan Medical CollegeNanchongChina
  2. 2.School of Chemistry and Chemical EngineeringHunan University of Science and TechnologyXiangtanChina
  3. 3.Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations