Synergic action of thermosensitive hydrogel and Au/Ag nanoalloy for sensitive and selective detection of pyocyanin

  • Andreea Cernat
  • Alexandra Canciu
  • Mihaela Tertis
  • Florin GraurEmail author
  • Cecilia CristeaEmail author
Research Paper


The rapid detection of bacterial strains has become a major topic thoroughly discussed across the biomedical field. Paired with the existence of nosocomial pathogen agents that imply extreme medical and financial challenges throughout diagnosis and treatment, the development of rapid and easy-to-use sensing devices has gained an increased amount of attention. Moreover, antibiotic resistance considered by World Health Organization as one of the “biggest threats to global health, food security, and development today” enables this topic as high priority. Pseudomonas aeruginosa, one of the most ubiquitous bacterial strains, has various quorum-sensing systems that are a direct cause of their virulence. One of them is represented by pyocyanin, a blue pigment with electroactive properties that is synthesized from early stages of bacterial colonization. Thus, the sensitive detection of this biomarker could enable a personalized and efficient therapy. It was achieved with the development of an electrochemical sensor based on a thermosensitive polymer, modified with Au/Ag nanoalloy for the rapid and accurate detection of pyocyanin, a virulence biomarker of Pseudomonas aeruginosa. The sensor displayed a linear range from 0.12 to 25 μM, and a limit of detection of 0.04 μM (signal/noise = 3). It was successfully tested in real samples spiked with the target analyte without any pretreatment other than a dilution step. The detection of pyocyanin with high recovery in whole blood in a time frame of 5–10 min from the moment of collection was performed with this electrochemical sensor.

Graphical abstract


Pyocyanin Pseudomonas aeruginosa Agar Au/Ag alloy Electrochemical sensor 


Funding information

This work was supported by grants of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI-UEFISCDI, project number PN-III-P1-1.2-PCCDI2017-0407 (INTELMAT).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Webster TA, Sismaet HJ, Conte JL, Chan I ping J, Goluch ED. Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin. Biosens Bioelectron. 2014;60:265–70.CrossRefGoogle Scholar
  2. 2.
    Dong D, Zou D, Liu H, Yang Z, Huang S, Liu N, et al. Rapid detection of Pseudomonas aeruginosa targeting the toxA gene in intensive care unit patients from Beijing, China. Front Microbiol. 2015;6:1100.Google Scholar
  3. 3.
    Workentine M, Poonja A, Waddell B, Duong J, Storey DG, Gregson D, et al. Development and validation of a PCR assay to detect the prairie epidemic strain of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol. 2016;54(2):489–91.CrossRefGoogle Scholar
  4. 4.
    Ciui B, Tertiş M, Cernat A, Sǎndulescu R, Wang J, Cristea C. Finger-based printed sensors integrated on a glove for on-site screening of Pseudomonas aeruginosa virulence factors. Anal Chem. 2018;90(12):7761–8.CrossRefGoogle Scholar
  5. 5.
    Gandouzi I, Tertis M, Cernat A, Bakhrouf A, Coros M, Pruneanu S, et al. Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles. Bioelectrochemistry. 2018;120:94–103.CrossRefGoogle Scholar
  6. 6.
    Cernat A, Tertis M, Gandouzi I, Bakhrouf A, Suciu M, Cristea C. Electrochemical sensor for the rapid detection of Pseudomonas aeruginosa siderophore based on a nanocomposite platform. Electrochem Commun. 2018;88:5–9.CrossRefGoogle Scholar
  7. 7.
    Lau GW, Hassett DJ, Ran H, Kong F. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med. 2004;10(12):599–606.CrossRefGoogle Scholar
  8. 8.
    Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol. 2006;61(5):1308–21.CrossRefGoogle Scholar
  9. 9.
    Sismaet HJ, Pinto AJ, Goluch ED. Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Biosens Bioelectron. 2017;97:65–9.CrossRefGoogle Scholar
  10. 10.
    Seviour T, Doyle LE, Lauw SJL, Hinks J, Rice SA, Nesatyy VJ, et al. Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. Chem Commun. 2015;51(18):3789–92.CrossRefGoogle Scholar
  11. 11.
    Jayaseelan S, Ramaswamy D, Dharmaraj S. Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol. 2014;30(4):1159–68.CrossRefGoogle Scholar
  12. 12.
    Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother. 2005;49(4):1306–11.CrossRefGoogle Scholar
  13. 13.
    Martínez-Solano L, Macia MD, Fajardo A, Oliver A, Martinez JL. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin Infect Dis. 2008;47(12):1526–33.CrossRefGoogle Scholar
  14. 14.
    Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun. 2014;5(1):4462.CrossRefGoogle Scholar
  15. 15.
    Alatraktchi FA, Andersen SB, Johansen HK, Molin S, Svendsen WE. Fast selective detection of pyocyanin using cyclic voltammetry. Sensors (Switzerland). 2016;16(3):408–18.CrossRefGoogle Scholar
  16. 16.
    Sharp D, Gladstone P, Smith RB, Forsythe S, Davis J. Approaching intelligent infection diagnostics: carbon fibre sensor for electrochemical pyocyanin detection. Bioelectrochemistry. 2010;77(2):114–9.CrossRefGoogle Scholar
  17. 17.
    Alatraktchi FA, Johansen HK, Molin S, Svendsen WE. Electrochemical sensing of biomarker for diagnostics of bacteria-specific infections. Nanomedicine. 2016;11(16):2185–95.CrossRefGoogle Scholar
  18. 18.
    Alatraktchi FAZ, Noori JS, Tanev GP, Mortensen J, Dimaki M, Johansen HK, et al. Paper-based sensors for rapid detection of virulence factor produced by Pseudomonas aeruginosa. PLoS One. 2018;13(3):1–9.CrossRefGoogle Scholar
  19. 19.
    Zheng L, Cai G, Wang S, Liao M, Li Y, Lin J. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens Bioelectron. 2019;124–125:143–9.CrossRefGoogle Scholar
  20. 20.
    An L, Zhao TS, Zeng L. Agar chemical hydrogel electrode binder for fuel-electrolyte-fed fuel cells. Appl Energy. 2013;109:67–71.CrossRefGoogle Scholar
  21. 21.
    Raphael E, Avellaneda CO, Manzolli B, Pawlicka A. Agar-based films for application as polymer electrolytes. Electrochim Acta. 2010;55(4):1455–9.CrossRefGoogle Scholar
  22. 22.
    Moon WG, Kim GP, Lee M, Song HD, Yi J. A biodegradable gel electrolyte for use in high-performance flexible supercapacitors. ACS Appl Mater Interfaces. 2015;7(6):3503–11.CrossRefGoogle Scholar
  23. 23.
    Tani Y, Tanaka K, Yabutani T, Mishima Y, Sakuraba H, Ohshima T, et al. Development of a D-amino acids electrochemical sensor based on immobilization of thermostable D-proline dehydrogenase within agar gel membrane. Anal Chim Acta. 2008;619(2):215–20.CrossRefGoogle Scholar
  24. 24.
    Li Y, Wang Z, Sun L, Liu L, Xu C, Kuang H. Nanoparticle-based sensors for food contaminants. TrAC Trends Anal Chem. 2019;113:74–83.CrossRefGoogle Scholar
  25. 25.
    Thanh TD, Balamurugan J, Hien H Van, Kim NH, Lee JH. A novel sensitive sensor for serotonin based on high-quality of AuAg nanoalloy encapsulated graphene electrocatalyst. Biosens Bioelectron 2017;96:186–193.Google Scholar
  26. 26.
    Tertiş M, Florea A, Adumitrăchioaie A, Cernat A, Bogdan D, Barbu-Tudoran L, et al. Detection of dopamine by a biomimetic electrochemical sensor based on polythioaniline-bridged gold nanoparticles. Chempluschem. 2017;82(4):561–9.CrossRefGoogle Scholar
  27. 27.
    Tertiș M, Cernat A, Lacatiș D, Florea A, Bogdan D, Suciu M, et al. Highly selective electrochemical detection of serotonin on polypyrrole and gold nanoparticles-based 3D architecture. Electrochem Commun. 2017;75:43–7.CrossRefGoogle Scholar
  28. 28.
    Muller M. Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin. Free Radic Biol Med. 2006;41(11):1670–7.CrossRefGoogle Scholar
  29. 29.
    Yang Y, Yu YY, Wang YZ, Zhang CL, Wang JX, Fang Z, et al. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin. Biosens Bioelectron. 2017;98:338–44.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Analytical Chemistry Department, Faculty of PharmacyIuliu Haţieganu University of Medicine and PharmacyCluj-NapocaRomania
  2. 2.Department of Surgery, Faculty of General MedicineIuliu Haţieganu University of Medicine and PharmacyCluj-NapocaRomania
  3. 3.Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”Cluj-NapocaRomania

Personalised recommendations